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Abstract 

In this paper, a new technique for modeling the forward kinematics of a Stewart manipulator is presented based on a 
predicted squared error cost function. Initially, the inverse kinematics model was introduced in detail for seeding the 
regression points. Genetic algorithms were then employed to search for optimal model structure from a set of candidate 
regression predictors. The proposed technique provides a significant reduction in the expenses of memory and computation 
compared to the traditional Taylor series expansion model. Such reduction increases the suitability of the model for a task 
space control application of the Stewart manipulator. 
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1. Introduction    * 

Stewart manipulators have been used in numerous 
industrial applications. Their potential benefits include a 
high force to weight ratio, accuracy, and rigidity. The 
Stewart manipulator consists of a moving plate connected 
to a base plate by six legs. Each leg has an upper part 
sliding inside a lower part. This gives the upper plate six 
degrees of freedom:  three translational motions (surge, 
sway, and heave) and three rotational motions (pitch, roll, 
and yaw). The acceleration forces of this moveable plate 
can emulate the physical feeling of piloting an aircraft in 
forward, backward, or turning motions. Such capability 
makes Stewart manipulators the best candidates for flight 
simulators. This perspective attracts many researchers to 
design a controller that can sustain a more realistic motion 
with minimum error. Two schemes are commonly used to 
control the Stewart manipulator:   joint space control and 
task space control.  The joint space scheme is developed 
using the information of joint displacement.  Each leg of 
the manipulator is controlled as a single-input single-
output (SISO) system as shown in Fig. 1-a. The joint space 
control involves the inverse kinematics model, which has a 
closed form. Although the joint space control scheme has 
been given great attention [1-5], it does not achieve high 
tracking performance because of the nonlinear coupling in 
the system.   

Task space control, on the other hand, achieves high 
performance tracking by counting the system coupling, 
and it has been widely investigated [6-10]. In this scheme, 
the framework is multi-input multi-output (MIMO) as 
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shown in Fig. 1-b. Thus, the forward kinematics is 
involved instead of inverse kinematics. This scheme is 
exacerbated by the fact that the Stewart manipulator 
forward kinematics has no closed form solution. For 
example, Dietmaier showed that there are 40 such possible 
solutions [11].  

Many studies have attempted different approaches to 
simplify the Stewart manipulator forward kinematics 
problem. Ilian et al. [8] presented a new closed-form 
solution of the problem, yet it required three extra sensors. 
Pratik et al. [7] and Sadjadian et al. [12-13] used the 
neural network approach. The accuracy of this approach is 
very sensitive to the structure of the neural network. For 
example, Sadjadian et al. [13] showed that different 
structures of neural networks lead to different accuracy in 
modeling the forward kinematics of Stewart manipulator. 
Liu et al. [14-15] proposed a numerical algorithm based on 
fundamental geometric operation with three nonlinear 
simultaneous algebraic equations, which is impractical for 
control process. Sadjadian and Taghirad [12] derived a 
fourth order Taylor series expansion using least square 
estimation (LSE). This technique has an over 
parameterization by 774 regression coefficients. Sheng et 
al. [16] presented a hybrid immune algorithm, genetic 
algorithm, and fuzzy system method for solving the 
forward kinematic problem of Stewart manipulator. The 
produced model is very complicated and has not yet been 
applied to any simulation or experimental test case. Tarokh 
[17] proposed an algorithm for solving the forward 
kinematics of Stewart manipulator. The algorithm consists 
of two phases: an on-line phase and an off-line phase. A 
database of the relationship between links and poses is 
decomposed into cells.  
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Figure 1. Comparison between the block diagram of the task space control and the block diagram of the joint space control:  X refers to task 
space displacements and q refers to joint space displacements. 

During the online phase, given link lengths, the 
appropriate cell is identified, and the poses are computed.  
Chen et al. [18] proposed a nonlinear observer based 
method to solve the forward kinematics. This observer 
uses the inverse kinematics as a baseline to update the 
model.  

The current research offers an efficient technique for 
modeling the Stewart manipulator forward kinematics. 
This technique uses the predicted squared error (PSE) cost 
function to find an optimal structure for the forward 
kinematics model by reducing the number of terms in the 
model without affecting the required accuracy for control 
applications. Six optimization problems are considered to 
define the task space coordinates (surge, sway, heave, roll, 
pitch, and yaw) as functions of joint space coordinates 
(length of each leg).  The candidate modeling predictors 
were selected from a third order polynomial’s terms in six-
dimensions (joint space).  Then, the genetic algorithms 
(GA) was used to search for an optimal structure to 
minimize PSE cost function using the so-called “Switching 
Factor”.  The results of this research can be used to save 
the computation and memory costs. This paper is 
organized as follows: in section two, the description of 
inverse kinematics enables one to determine the link 
lengths in terms of desired/specified upper platform 
position and angular orientations. Section three includes a 
brief discussion of PSE regression model. Section four 
presents the use of genetic algorithm to search for optimal 
model structure. Section five offers the results of the 
simulation used to examine the proposed technique. 
Finally, section six is the conclusion. 

2. Inverse Kinematics Model  

There are two frames describing the motion of the 
moving plate: an inertia frame (X, Y, Z) located at the 
center of the base plate and a body frame (xB, yB, zB) 
located at the center of the moving plate with the zB-axis 
pointing outward. The angle between the local xB-axis of 
the moving plate and the line of the joint Jui is denoted by 
β i  as shown in Fig. (2).   

a) Three-dimensional view 

b) Top view 

Figure 2. Stewart manipulator. 
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The position of the joint Jui in the plate body frame is  

       1,2,...,6i       T]0iβsinuRiβcosuR[
uiJP 

TB
uiZB

uiYB
uiXB  (1) 

In the same manner, an angle α i is defined between the inertia X-axis and the line of the joint Jli. The position of the joint 
Jli in the inertia frame is defined as: 

       1,2,...,6i       T]0isinlRicosR[
liJP  l

TI
liZI

liYI
liXI  (2) 

The upper plate has a capability for 6-DOF motion (three rotational motions and three translational motions). The 
rotational motions of the plate are defined by Euler angles in sequence 1-2-3. Thus the transformation from the body frame 
(xB, yB, zB) to the inertia frame (X, Y, Z) is given by the Matrix e : platR
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where C refers to angle cosine and S refers to angle 
sine. The angles ψ, θ, and φ are Euler angles. In addition to 
the rotation, one should consider the translation vector 

as: I
plateT
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


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






hz(t)

y(t)
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plateT I
 (4) 

where h is the initial height of the upper plate’s center. 
The trajectory of the upper plate’s center is defined 
by , , and . The position of the joint Jx(t) y(t) z(t) ui in 
inertial frame (X, Y, Z) is then calculated as: 

  IBTI
ui

I
ui

I
ui

I ZYX plateJplateJ TPRP
uiui
  (5) 

 
Each leg has three degrees of freedom: two rotational 

and one translational motion. Thus a spherical joint is 
employed to connect the upper part of each leg by the 
movable plate while the lower part is connected to the base 
plate by a universal joint as shown in Fig. (3). The length 
vector of the ith leg  can then be computed from Eq. (2) 
and (5) as: 

I
iL

 1,2,...,6i        
liJP-

uiJPI
iL  II  (6) 

By substituting Eq. (3) and Eq. (4) in Eq. (5), and 
considering the square value of vector  in Eq. (6), the 
relationship between the joint space variables and task 
space variables can be summarized as (Equation. 7): 
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 (7) 

where i = 1, 2, …, 6. Based on Eq. (7), the inverse kinematics has a closed form. On the other hand, it is “difficult” to 
develop any closed form for the forward kinematics. 
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Figure 3. Leg mechanism of Stewart manipulator. 

3. Regression Model and Predicted Squared Error 

If an N-dimensional vector of independent 

responses is modeled in terms of 

linear combinations of K modeling predictors 

 , then: 

 T

N21 yyyY 

 K2 qq 



1qQ 

εγQεqqqY KK2211     (8) 

where  K21γ    is an K-dimensional 

constant model vector to be determined, and ε denotes the 

N-dimensional modeling residual vector. Each  is an N-

dimensional vector function depending on the independent 
variables. In conventional least square estimation (LSE), 
the optimization goal is to minimize the sum of square 
errors between the estimated and measured values by 
defining a scalar function J. 

iq
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TTN
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By minimizing J, the regression coefficients are 
calculated by: 

  YQ
1

QQγ TT 
  (10) 

 
 
 
 

 
Although LSE minimizes the error between the 

measured and estimated data, this method cannot ensure an 
optimal regression structure. Thus, considering many 
regression predictors sometimes leads to over 
parameterization and noisy model. Many methodologies 
have been proposed to search for the optimal regression 
structure; such as, backward elimination, stepwise, and 
others. One of the most efficient techniques to find the 
minimum number of predictors with minimum error is the 
predicted squared error (PSE). This technique has an 
optimization problem because the structure of the model 
should be chosen to minimize FPSE defined by [19]: 

2
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2


N

K

N

J
PSEF   (11) 

The constant  is the prior upper-bound estimate 
of the square error between future data and the model. The 
F

2
max

2
max

PSE function depends on the mean squared fit error J/N 
and a term proportional to the number of terms in the 
model. Thus  is considered as the residual variance 
estimate for a constant model structure equal to the mean 
of the measured response values by: 


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


N

i iyiy
N 1

212
max  (12) 

where iy  is the mean value of vector Y.   
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4. Optimization Procedure  for Modeling the Forward 
Kinematics 

Genetic algorithm (GA) is now considered as one of 
the most popular optimization and search techniques. The 
first obvious application for the algorithm was traced back 
to 1962 when Holland introduced the algorithm in his 
work studying adaptive systems [20]. The algorithm then 
received an enormous exploration by Goldberg [21]. The 
main advantages of GA are its global optimization 
performance and the ease of distributing its calculations 
among several processors or computers as it operates on 
the population of solutions that can be evaluated 
concurrently. It is a very simple method, generally 
applicable, not inclined to local optimization problems that 
arise in a multimodal search space, and no needs for 
special mathematical treatment. Moreover the algorithm is 
more applicable for the discontinuous problem, as in the 
case of the present study, unlike the conventional gradient-
based searching algorithms.  

Basically, genetic algorithm works based on the 
mechanism of natural selection and evolutionary genetics. 
The algorithm starts by coding the variables to binary 
strings (chromosomes). Every chromosome has n genes. 
The gene is a binary bit by value zero or one. Three main 
operations control the procedure of the GA: reproduction, 
crossover, and mutation. Reproduction is processing to 
select the parent from a generation. The process is based 

on survival of the fittest (highest performance index). In 
this way, the reproduction process guides the search for the 
best individuals (high performance index). After the 
individuals are selected, the crossover process is then used 
to swap between two chromosomes by specific 
probabilistic decision. The crossover process generates 
offspring carrying mixed information from swapped 
parents (chromosomes). Mutation is the mechanism to 
prevent the algorithm from local optimal points by adding 
some degree of randomness. The process is performed by 
alternation of the gene from zero to one or from one to 
zero with the mutation point determined uniformly at 
random. The mutation rate should be consider carefully 
since the higher mutation rate means more number of 
generations are required for algorithm convergence and a 
low mutation rate may lead to a convergence for a local 
minimum. The algorithm maintains a constant size of 
generation by selecting the fittest chromosomes from 
parents and offsprings. The algorithm iteratively operates 
to converge for schema matches by some tolerance. 
Further description of genetic algorithms can be found in 
Goldberg [21-22]. 

In the current research, the optimization procedure is 
developed by using a switching factor SF. This factor 

 K21 sfsfsfSF   is a K-dimensional vector. 
Each element (sfk) of this vector is a binary bit to disable 
or enable the vector qi as revealed by:   
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 (13) 

If the value of this bit is “1”, the equivalent predictor 
vector qi is then counted in the structure of the regression 
model; if the value is “0”, qi is omitted. Searching for the 
optimal SF or optimal structure model is a discontinued 
optimization problem. The main reason to use the GA in 
the current problem is that the most conventional 
optimization techniques depend on slope or curvature of 
the response surface which is not available in the current 
problem. The procedure can be summarized as: 
1. Generate a binary vector SF. 
2. Construct the Q matrix from Eq. (13). 
3. Compute the regression constant model vector γ using 

LSE in Eq. (10). 
4. Compute the FPSE cost function in Eq. (11). 

An example is listed here to clear the idea behind the 
switching factor:   

If a set of N data  TNxxx 21    x 

 TNx

 and 

is collected.  21 xx    y 
 
 
 

Assume, there are five functions considered to be 
candidates for modeling y = f(x), these functions are 
compile in a vector Q as  

    








1x

1
xlogxcosx1    Q

2

2
 (14) 

In this example, there are 32 = 25 possibilities to build 
the regression model. The proposed switching factor SF is 
used to code these possibilities. Thus, the switching factor 
is a 5-dimensional vector. Each element is either “1” or 
“0”. If the SF = [1 0 1 0 0], then the first and third 
candidates are only passed to the LSE or the selected 
regression structure is y = γ1+γ2cos(x). Based on this 
regression structure the coefficients γ1 and γ2 are 
computed and the PSE cost function is evaluated as a 
function of number of terms K = 2 and the error between 
the estimated and the measured vector y . Then, GA to 
qualify the performance of each SF, where 32 possibilities 
are available to construct the structure of the regression 
model for minimum FPSE, repeats this procedure. Note: the 
model is based on the assumption that manipulator has a 
rigid links or no uncertainty source.  
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5. Simulation Results and Discussion 

The proposed scheme is applied to the Stewart platform 
with parameters given in Table.1 . A population of 15000 
samples was seeded from the inverse kinematics model. 
The regression predictors were generated from a third 
order polynomial in the sense that any analytical function 
can be expanded in polynomial form. Each term of this 
polynomial is a six-dimensional function given by: 

6 , 2, 1,i    
6

1
3 and   

6

1










i ij 
i

i
ij

iLiq  (15) 

where  ji = 1, 2, and 3 is a power index. The number of 
predictors generated by Eq. (15) is 84. Six optimization 
problems are then addressed to model the translational 
{x(t), y(t), z(t)} and rotational {φ(t), θ(t), ψ(t)} motions in 
terms of joint space variables {Li(t), i= 1,2, …, 6}. Genetic 
algorithms then propagate the search for optimal SF for 
each motion. Since 284 possible structures are assigned to 
be candidates for the optimization search, the length of 
each chromosome is coded by 84 bits. For the six 
optimization problems, the mutation rate is 20%. Each 
generation has a fixed population size 20 or no generation 
overlap.  The optimization code was run many times with 
different starting guess (initial solution) and it converges to 
the same solution every time. The algorithm is highly 
convergent for all the optimization problems. The average 
number of generations for convergence is 3500. The 
resultant optimal regression structure is listed in Appendix. 
A.  

Table 1.  Manipulator parameters used in the simulation. 

Variable Description Value Unit

Lu 
Length of 
upper leg 0.95 m 

Ll 
Length of 
lower leg 0.95 m 

Ru 
Radius of the 
movable plate 0.4 m 

Rl 
Radius of base 

plate 1 m 




 
Joint angles of 

base plate 
[-50 , 50, 70, 170, -170, 

-70] 
deg




 
Joint angles of 

upper plate 
[-2, 2, 118,  122 -122  

-118] 
deg

 
Table 2 shows the computational expenses of the model 

listed in Appendix A. The computational expense of each 
expression is computed as the number of terms and the 
number of multiplication operations.  For example, the 
yaw expression has 30 terms:  21 cubic/tri-linear terms, 8 
quadratic/bi-linear terms, and one linear term. The total 
number of the multiplication in this expression is 80 
(21x3+ 8x2+1) operations. For the full Taylor expansion 
[12], the total number of terms is 84:  56 cubic/tri-linear 
terms, 21 quadratic/bi-linear terms, 6 linear terms, and 1 
constant term. The total number of multiplication is then 
216 operations. Such comparison proves that the proposed 
technique has the capability to deliver an optimal forward 
kinematics model for Stewart manipulator. Herein, the 

optimality is defined in terms of saving memory and 
computation expenses. The yaw motion example indicates 
that there is 65% saving in term of terms and 63% saving 
in number of multiplications. This example is the worst in 
the overall model (see Table. 2).  

Table 2. Computational expenses of the proposed model in the 
form of number of terms and number of multiplications for each 
expression 

Two tracks are selected to test the model adequacy. The 
first track is a smooth movement from an initial point {x = 
10 cm, y = -10 cm, z = -8 cm, φ = 10 deg, θ = -10 deg, and 
ψ = -10 deg} to a final point {x = -10 cm, y = 10 cm, z = 8 
cm, φ = -10 deg, θ = 10 deg, and ψ = 10 deg}. The time 
horizon of this track is 20 sec. This track is assigned to 
have zero velocities and accelerations for the initial and 
final points. After the track is generated, the inverse 
kinematics is then used to find the equivalent joint 
displacements {Li(t), i = 1,2, …, 6} as shown in Fig. (4). 
The second track is a sinusoidal movement. The task 
displacement amplitudes of these sinusoidal waves are Ax 
= 15 cm, Ay = 15 cm, Az =10 cm, Aφ = 10 deg, Aθ = 10 
deg, and Aψ = 5 deg. The resultant joint displacements of 
the second track are shown in Fig. (5). The two tracks have 
been selected to cover a wide range of displacements and 
velocities inside the workspace of the manipulator. The 
task space displacements {x(t), y(t), z(t), φ(t), θ(t), and 
ψ(t)} for the first and second tracks are now reproduced  
by the model listed in Appendix A. Figures (6) and (7) 
show a comparison between the original track and the 
simulation results using the proposed model.  

Figure (8) shows the variation of the percentage error 
for the two tracks with time.  The results indicate that the 
percentage error is within ± 4%. The pitch motion has the 
worst error signal in the first track while the roll motion 
has the worst error signal in the second track. However, 
both of them are still inside the acceptable level of the 
error (less than 5%). The influence of the amplitude and 
the frequency variations on the error signal for the second 
track is shown in figure (9).  The simulation results show 
that the roll motion has the highest maximum error for all 
amplitudes and frequencies.  The percentage of the 
maximum error (ME) for position and velocity roll motion 
is used as an indicator for the error. There is insignificant 
variation of ME % with frequency. Such result is expected 
since the model is a kinematic one. the model delivers the 
task space displacements as functions of  the joint space 
displacements without any derivatives (see Appendix A). 
Increasing the amplitude increases the percentage of the 
maximum error with a quadratic shape.    

Table (3) summarizes the statistics of errors from the 
approximate model in the two test cases. MSE is the mean 
squared error. ME is the maximum error during the track. 
The accuracy of the model is tested for both position and 
velocity since the accuracy in the velocity should be 
considered for a controller designing purpose (PD 
controller). The  maximum position error in the first track 

 Surge Sway Heave Roll Pitch Yaw 

Number of 
terms 

24 24 25 26 22 30 

Number of 
multiplications

62 66 67 65 48 80 
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for sway motion is 0.28 cm and for the pitch motion is 
0.41 deg. On the other hand, the maximum velocity error 
that appeared in sway motion is 0.23 cm/s and in the pitch 
motion is 0.34 deg/sec. This is sufficiently adequate for 
building and designing a task space control for the Stewart 
manipulator. Moreover, the model has a simple 
computational manipulation.   

The authors previously developed the workspace for 
the same manipulator parameters in reference [4]. The 
workspace indicates that the heave motion limits are 50 cm 

downward and 65 cm upward, if all the rest of motions 
have zero values. A new trajectory operating close to these 
boundaries (singularity-nearby) is generated in Fig. 10-a. 
This test case investigates the singularity-nearby 
performance. Figure 10-b shows that the accuracy level is 
within the accepted range, however as the manipulator 
heads to the limit values as the error increases. All these 
observations emphasize the applicability of the proposed 
model to be imbedded in the control loop more efficiently 
than other approaches. 

 

Table 3.  Statistical Comparison between the first and the second tracks:  MSE refers to the mean squared error during the track and ME 
refers to the maximum error during the track 

Position MSE Velocity MSE Position ME Velocity ME 
 

Track 1 Track 2 Track 1 Track 2 Track 1 Track 2 Track 1 Track 2 

Surge 1.03 cm2 0.81 cm2 0.04 cm2/s2 0.05 cm2/s2 0.13  cm 0.17 cm 0.09 cm/s 0.08 cm/s 

Sway 1.12 cm2 1.45 cm2 0.15 cm2/s2 0.52 cm2/s2 0.28 cm 0.27 cm 0.04 cm/s 0.23 cm/s 

Heave 1.25 cm2 0.86 cm2 0.22 cm2/s2 0.56 cm2/s2 0.11 cm 0.04 cm 0.03 cm/s 0.20 cm/s 

Roll 0.21 deg2 1.09 deg2 0.19 deg2/s2 0.78 deg2/s2 0.11  deg 0.39 deg 0.11 deg/s 0.28 deg/s 

Pitch 2.06 deg2 2.00 deg2 0.96 deg2/s2 1.89 deg2/s2 0.41  deg 0.33 deg 0.12 deg/s 0.34 deg/s 

Yaw 1.05 deg2 0.46 deg2 0.45 deg2/s2 0.32 deg2/s2 0.30  deg 0.14 deg 0.06 deg/s 0.13 deg/s 

 

 

Figure 4. The time history of the joint displacements for the first track. 
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Figure 5. The time history of the joint space displacements for the second track. 
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Figure 6. continues next page….. 
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Figure  6. Comparison between the exact model and the results from the proposed approximate model for the first track: smooth motion 
between two different points. 
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Figure 7. Comparison between the exact model and the results from the proposed approximate model for the second track: sinusoidal motion 
with frequency 0.5 rad/s. 
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Figure 8. The variation of the error between the exact and the proposed approximate model . 

 

 
a) Position Error 

 
b) Velocity Error 

Figure 9. The variation of the percentage maximum error (ME) for the roll motion and velocity with amplitude and frequency. 
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Figure 10. The performance of the proposed model in the singularity-nearby vicinity. 

 
6. Conclusion 

In this paper, we propose a new procedure to model the 
Stewart manipulator forward kinematics. The modeling 
procedure is based on predicted squared error cost 
function. This cost function is a trade-off between a 
minimum error and a minimum number of terms in the 
regression model. To demonstrate the technique feasibility, 
a simulation by numerical example has been developed. 
284 candidate regression structures were selected to model 
the forward kinematics. The structures’ predictors were 
generated from a third order polynomial in a six-
dimensional space. Using a genetic algorithm as a global 
optimization technique has successfully solved the six 
optimization problems.  In this way, a simple structure of 
forward kinematics for the Stewart manipulator was 
developed. The model has the capability to reduce the 
computational expense by at least 65% from the traditional 
Taylor expansion previously investigated. Such reduction 
increases the suitability for the model in the real time 
control. Thus, most of previous in literature models seek 
the computational expenses, which restrict their practical 
ability. The model was tested by two generic tracks 
providing high precision results with maximum percentage 
error less than 5%.  All these observations emphasize that 
the proposed model is quite applicable for a task space 
control.  
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APPENDIX A: Resultant Model 
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