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Abstract 

Due to the extensive use of highly automated machine tools in the industry, manufacturing requires reliable models for the 
prediction of output performance of machining processes. The prediction of surface roughness plays a very important role in 
the manufacturing industry. The present work deals with the development of surface roughness prediction model for 
machining of aluminum alloys, using adaptive neuro-fuzzy inference system (ANFIS). The experimentation has been carried 
out on CNC turning machine with carbide cutting tool for machining aluminum alloys covering a wide range of machining 
conditions. The ANFIS model has been developed in terms of machining parameters for the prediction of surface roughness 
using train data. The Experimental validation runs were conducted for validating the model. To judge the accuracy and ability 
of the model percentage deviation and average percentage deviation has been used. The Response Surface Methodology 
(RSM) is also applied to model the same data. The ANFIS results are compared with the RSM results. Comparison results 
showed that the ANFIS results are superior to the RSM results. 
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1. Introduction  * 

   The aluminum alloys are used in various engineering 
applications like structural, cryogenic, food processing, oil 
and gas process industries etc. because of light weight and 
high tensile strength. The quality of the surface plays a 
very important role in the performance of the turning as a 
good quality turned surface significantly improves fatigue 
strength, corrosion resistance, or creep life. Surface 
roughness also affects several functional attributes of parts, 
such as contact causing surface friction, wearing, light 
reflection, heat transmission, ability of distributing and 
holding a lubricant, load bearing capacity, coating or 
resisting fatigue. Therefore the desired finish surface is 
usually specified and the appropriate processes are 
selected to reach the required quality [1]. To achieve the 
desired surface finish, a good predictive model is required 
for stable machining. The number of surface roughness 
prediction models available in literature is very limited [2]. 
Most surface prediction models are empirical and are 
generally based on experiments in the laboratory. In 
addition, it is very difficult in practice, to keep all factors 
under control as required to obtain reproducible results [3]. 
Taraman [4] used Response Surface Methodology for 
Prediction of surface roughness.  Hasegawa et al., [5] 
conducted 34 factorial designs to conduct experiments for 
the surface roughness prediction model. They found that 
the surface roughness increased with an increase in cutting 
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speed. Sundaram and Lambert [6-7] considered six 
variables i.e. speed, feed, depth of cut, time of cut, nose 
radius and type of tool to monitor surface roughness. Mital 
and Mehta [8] conducted a survey of surface roughness 
prediction models developed and factors influencing 
surface roughness. They found that most of the surface 
roughness prediction models developed for steels.  
Generally these models have a complex relation ship 
between surface roughness and operational parameters, 
work materials and chip breaker types. Salah Gasim 
Ahmed [9] developed an empirical surface roughness 
model for commercial aluminum, based on metal cutting 
results from factorial experiments. The model includes the 
feed, depth of cut and spindle speed. Dilbag Singh and 
P. Venkateswara Rao [10] conducted experiments to 
determine the effects of cutting conditions and tool 
geometry on the surface roughness in the finish hard 
turning of the bearing steel (AISI 52100) using mixed 
ceramic inserts made up of aluminum oxide and titanium 
carbide with different nose radius and different effective 
rake angles as cutting tools. They found that the feed is the 
most dominant factor determining the surface finish 
followed by nose radius and cutting velocity. Li Zhanjie 
[11] used Radial Basis Function network to predict surface 
roughness and compared with measured value and the 
result from regression analysis. Chen Lu and Jean-Philippe 
Costes [12] considered three variables i.e., cutting speed, 
depth of cut and feed rate to predict the surface profile in 
turning process using Radial Basis Function (RBF). They 
found that the RBF networks have the advantage over 
Back Propagation Networks (BPN).  In the present work 
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the adaptive neuro-fuzzy model has been developed for the 
prediction of surface roughness. The predicted and 
measured values are fairly close to each other. The 
developed model can be effectively used to predict the 
surface roughness in the machining of aluminum alloys 
within the ranges of variables studied. The ANFIS results 
are compared with the RSM results. Comparison results 
showed that the ANFIS results are superior to the RSM 
results. 

2. Aluminum Alloy Material 

The work material used for the present investigation is 
aluminum alloy 6082 cylindrical work pieces. The 
chemical composition and physical properties of the 
material used in this work is given in Table 1 and Table 2. 

3. Adaptive Neuro Fuzzy Inference Method 

The fuzzy logic and fuzzy inference system (FIS) is an 
effective technique for the identification and control of 
complex non-linear systems. Fuzzy logic is particularly 
attractive due to its ability to solve problems in the absence 
of accurate mathematical models [13]. Surface roughness 
modeling in turning is considered complex process, so 
using the conventional techniques to model the surface 
roughness in turning results in significant discrepancies 
between simulation results and experimental data. Thus, 
this complex and highly time-variable process fits within 
the realm of neuro-fuzzy techniques. The application of a 
neuro-fuzzy inference system is used for prediction and 
overcomes the limitations of a fuzzy inference system such 
as the dependency on the expert for fuzzy rule generation 
and design of the non- adaptive fuzzy set. 

3.1. Structure of The Adaptive Neuro-Fuzzy Inference 
System 

Adaptive neuro-fuzzy inference system is a fuzzy 
inference system implemented in the framework of an 
adaptive neural network. By using a hybrid learning 
procedure, ANFIS can construct an input-output mapping 
based on both human-knowledge as fuzzy if-then rules and 
approximate membership functions from the stipulated 
input-output data pairs for neural network training. This 
procedure of developing a FIS using the framework of 
adaptive neural networks is called an adaptive neuro fuzzy 
inference system (ANFIS). There are two methods that 
ANFIS learning employs for updating membership 
function parameters: 1) backpropagation for all parameters 
(a steepest descent method), and 2) a hybrid method 
consisting of backpropagation for the parameters 
associated with the input membership and least squares 
estimation for the parameters associated with the output 
membership functions. As a result, the training error 
decreases, at least locally, throughout the learning process. 
Therefore, the more the initial membership functions 
resemble the optimal ones, the easier it will be for the 
model parameter training to converge. Human expertise 
about the target system to be modeled may aid in setting 
up these initial membership function parameters in the FIS 
structure [14-15].  The general ANFIS architecture is 
shown in Fig 1.  

Five network layers are used by ANFIS to perform the 
following fuzzy inference steps. (i) Input fuzzification, (ii) 
Fuzzy set database construction, (iii) Fuzzy rule base 
construction, (iv) Decision making, and (v) Output 
defuzzification.  

For instance assume that the FIS has two inputs x1 and 
x2 and one output y. For the first order Sugeno fuzzy 
model, a typical rule set with two fuzzy if-then rules can 
be expressed as: 

 

Rule 1: IF (x 1 is A1) AND (x2 is B1) THEN f1=
p

 
 

 
 

is described as: 

 

1x1+q1x2+r1 (1) 

Rule 2: IF ((x 1 is A2) AND (x2 is B2) THEN f2=
p2x1+q2x2+r2 (2) 

Where A1, A2 and B1, B2 are the member ship 
functions for the input x1 and x2, respectively, p1, q1, r1 
and p2, q2, r2 are the parameters of the output function. 
The functioning of the ANFIS 

Layer 1: Calculate Membership Value for Premise 
Parameter 

Every node in this layer produces membership grades 
of an input parameter. The node output 

Ol,i = µAi (x1) for i=1,2, or (3) 

Ol,i = µBi-2 (x2) for i=3, 4 (4) 

Where x1 (or x2) is the input to the node i; Ai (or Bi-2) 
is a linguistic fuzzy set associated with this node. O1,i is 
the membership functions (MFs) grade of a fuzzy set and it 
specifies the degree to which the given input x1 (or x2) 
satisfies the quantifier. MFs can be any functions that are 
Gaussian, generalized bell shaped, triangular and 
trapezoidal shaped functions. A generalized bell shaped 
function can be selected within this MFs and it is described 
as: 
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Where ai, bi, ci is the  parameter set which changes the 
shapes of the membership function degree with maximum 
value equal to 1 and minimum value equal to 0. 

Layer 2: Firing Strength of Rule 
Every node in this layer, labeled Π, whose output is the 
product of all incoming signals: 

 

O2, i = wi= µAi (x1) µBi (x2) for i = 1, 2 (6)  

Layer 3: Normalize Firing Strength 
The ith node of this layer, labeled N, calculates the 

normalized firing strength as, 
 

O3,i = iw
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  i = 1,2 (7) 
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Figure 1. ANFIS architecture.                                                      

 
Table 1. Chemical composition of Aluminum Alloy 6082 

Composition weight (%) 

Coper 0.1 (max) 

Magnesium 0.4-1.2 

Silicon 0.6-1.3 

Iron 0.6 

Manganese 0.4-1.0 

Chromium up to 0.25 

Others 0.3 

Aluminum balance 

     
  Layer 4: Consequent Parameters 

Every node i in this layer is an adaptive node with a 
node function, 

O4,i = fiw



i  = i (pw


ix1+qix2+ri (8) ) 

 this node. 

Where i  is the normalized weighting factor of the iw th 
rule, fi is the output of the ith rule and pi, qi ri is 
consequent parameter set of

Layer 5: Overall Output 

The single node in this layer is a fixed node labeled Σ, 
which computes the oveall output as the summation of all 
incoming signals: 

Overall output =  



i

i
i

i
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iii 5, w
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 (9) 

ANFIS requires a training data set of desired 
input/output pair (x1, x2…xm, y) depicting the target 
system to be modeled. ANFIS adaptively maps the inputs 
(x1, x2…xm) to the outputs (y) through MFs, the rule base 
and the related parameters emulating the given training 
data set. It starts with initial MFs, in terms of type and 
number, and the rule base that can be designed intuitively. 
ANFIS applies a hybrid learning method for updating the 
FIS parameters. It utilizes the gradient descent approach to  

 

 

Table 2. Physical properties of Aluminum alloy 6082. 

 
fine-tune the premise parameters that define MFs. It 
applies the least-squares method to identify the consequent 
parameters that define the coefficients of each output 
equation in the Sugeno-type fuzzy rule base. The training 
process continues till the desired number of training steps 
(epochs) or the desired root mean square error (RMSE) 
between the desired and the generated output is achieved. 
In addition to the training data, the validation data are also 
optionally used for checking the generalization capability 
of FIS. 

4. Experimental Details 

The experiments were conducted according to full 
factorial design. The cutting parameters selected for the 
present investigation is cutting speed (V), feed (f) and 
depth (d) of cut. Since the considered variables are multi-
level variables and their outcome effects are not linearly 
related. It has been decided to use three level tests for each 
factor. The machining parameters used and their levels are  
given in Table 3.  The machining parameters, actual 
setting values and average surface roughness values are 
presented in Table 4. All the experiments were conducted 
on CNC Turning Lathe with the following specifications: 
Swing Over the Bed: 150mm, Swing Over Cross Slide: 
50mm, Distance Between Centers: 300mm, Spindle Power  
 

Property Value 

Density 2.70 g/ cm3 

Melting point 555°C 

Modulus of Elasticity 70 G Pa 

Electrical Resistivity 0.038x10-6 Ω .m 

Thermal Conductivity 180 W/m K 

Thermal Expansion 24x10-6 /K 
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Table 3. Machining Parameters and their Levels. 

 
1 HP, Spindle Speed (step less):0-3000rpm, Spindle Bore: 
21mm, Spindle Taper: MT3, Tailstock Taper: MT2, the 
Tool Holder used for Turning operation was a WIDAX 
tool holder SDJCR 1212 11F3 and the tool material used 
for the study was Carbide Cutting Tool. 

The average surface roughness (Ra) which is mostly 
used in industrial environments is taken up for the present 
study. The roughness was measured number of times and 
averaged. The average surface roughness is the integral 
absolute value of the height of the roughness profile over 
the evaluation length and was represented by the following 
equation. 


L

0

a Y(x)dx
L

1
R  (10) 

Where L is the length taken for observation and Y is 
the ordinate of the profile curve. The surface roughness 
was measured by using Surtronic 3+ stylus type instrument 
manufactured by Taylor Hobson with the following 
specifications. Traverse Speed: 1mm/sec, Cut-off values   
0.25mm, 0.80mm and 2.50mm, Display LCD matrix, 
Battery Alcaline 600 measurements of 4 mm measurement 
length. The surfaces are cleaned and positioned using a V-
block before each measurement. The actual setting values 
for the design matrix [16] and experimental results are 
shown in Table 4.  

5. Results and Discussion 

The ANFIS model has been developed as a function of 
machining parameters using twenty seven train data 
presented in Table 4. The fuzzy logic toolbox of 
MATLAB 7.0 was used to train the ANFIS and obtain the 
results. Different ANFIS parameters were tested as 
training parameters in order to achieve the perfect training 
and the maximum prediction accuracy. Fig 2 shows the 
fuzzy inference system (FIS) of ANFIS. The three inputs 
and one output and their final fuzzy membership functions 

are shown in Fig 2. A total of 78 network nodes and 27 
fuzzy rules were used to build the fuzzy inference system. 
A triangular membership functions were used to train 
ANFIS because it achieved the lowest training error of 
(0.1666) at 10 epochs, as shown in the training curve of 
Fig 3. A perfect training is clear from Fig 3. Three 
triangular membership functions were used for inputs (V, f 
and d). Fig 4 shows the comparison between the 
experimental and predicted values by the ANFIS and RSM 
model for training data. The predicted values by ANFIS 
and RSM model for training data are presented in Table 4. 
The average percentage deviation for training data set in 
the prediction of Surface roughness using ANFIS and 
RSM model is found to be 9.75%, 15.57% respectively. 

5.1. Validation Runs 

The models developed by ANFIS and RSM are 
validated using the validation data presented in Table 5. 
The predicted results were presented in Table 5. The 
predicted surface roughness values with the actual 
experimental values of surface roughness were plotted and 
shown in Fig 5. The average percentage deviation in the 
prediction of Surface roughness using ANFIS and RSM is 
found to be 3.29% and 15.86% respectively. 

6. Conclusions 

An adaptive neuro-fuzzy system and RSM is applied to 
predict the surface roughness during the turning process. 
The machining parameters were used as inputs to the 
ANFIS and RSM to predict surface roughness. The 
following conclusions can be drawn from this study: 
 The ANFIS model could predict the surface roughness 

for training data with an average percentage deviation 
of 9.75% when a triangular member ship function is 
applied or 90.25% accuracy, while RSM model could 
predict the surface roughness for training data with an 
average percentage deviation of 15.57% or 84.43% 
accuracy from training data set.  

 The ANFIS model could predict the surface roughness 
for testing or validation data set with an average 
percentage deviation of 3.29% when a triangular 
member ship function is applied or 96.71% accuracy, 
while RSM model could predict the surface roughness 
for training data with an average percentage deviation 
of 15.86% or 84.14% from validation data set. The 
accuracy of the developed model can be improved by 
including more number of parameters.  
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Table 4. Experimental Conditions, results (Experimental and Predicted). 

 

 

Figure 2. Fuzzy inference system for surface roughness prediction 

 



  © 2009 Jordan Journal of Mechanical and Industrial Engineering. All rights reserved - Volume 3, Number 4  (ISSN 1995-6665) 257 

 

Figure 3. ANFIS Training Curve. 
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Figure 4. comparison between experimental and predicted values for training data. 

 

Figure 5. ANFIS Validation diagram. 
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