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Abstract 

The interference effect on the new strain concentration factor (SNCF), which has been defined under triaxial stress state; is 
studied using the Finite Element Method (FEM).To this end, cylindrical bars with double circumferentially U-notches under 
static tension are employed. he new SNCF is constant in the elastic deformation and the range of this constant value increases 
with increasing notch pitch (lo) in the range 0.0 <lo≤ 0.5 mm, then it decreases with increasing lo, and reaches a value nearly 
equal to that of the single circumferential U-notch. This becomes prominent with decreasing notch radius. As plastic 
deformation develops from the notch root; the new SNCF increases from its elastic value to a maximum value. On further 
plastic deformation, the new SNCF decreases with plastic deformation. The current results indicate that the notch pitch, 
where the interference effect is more pronounced on the new SNCF, is 0.0 ≤ lo ≤ 5 mm. 
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do   initial net-section diameter   

Do  initial gross diameter 
ε   axial strain z

E     Young’s modulus con
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con conventional strain-concentration 
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new   new strain-concentration factor 

P                            tensile load 
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rn  current net-section radius = d/2   
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(εz )  conventional average axial strain av

new (εz )   new average axial strain av

(ε )              maximum axial strain z max
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ρo initial notch radius 

σeq        equivalent stress 
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z σσσσσσ θθ −+−+−= rrequivalent stress  

(σeq)max             equivalent stress at the notch root 

σr , σz , σθ        radial , axial and tangential stresses 

σY                     yield stress 

               average axial stress at the net section = P/A (σz )av

(σz)max     axial stress at the notch root in elastic   

deformation 

(σθ)        tangential stress at the notch root in elastic  

deformation 
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Abbreviations 

SNCF            strain concentration factor 

SSCF    stress concentration factor 

1. Introduction 

Stress and strain concentrations in any type of loading 
arise when uniformity of geometry is disrupted. 
Particularly, geometrical irregularities such as notches, 
grooves, holes, or defects are acting as local stress and 
strain raisers. They alter the lines of the principal stress; 
and bring about the stress and strain concentrations at the 
notch tip. Moreover, biaxial or triaxial stress state is 
produced at the net section even if the single loading, like 
axial tension, is applied to the notched bars.  This single 
loading generates the uniaxial stress state in the unnotched 
part with the gross section.  It should be noted that the net 
section is subjected simultaneously to the stress and strain 
concentrations and the multiaxial stress state. 

Many numerical analyses and theoretical studies have 
been conducted to obtain the elastic stress-concentration 
factor (SSCF); the results have been published and used 
for engineering design [1- 6].  The Neuber’s approximate 
analytical solutions are the main source, concerning the 
notch depth effect on the elastic SSCF [3-7].  Neuber’s 
rule predicts that the plastic SNCF increases, and the 
plastic SSCF decreases from their elastic values as plastic 
deformation develops from the notch root [7].  Many 
experimental or analytical studies under static axial tension 
have confirmed this prediction [7-13].  These results 
indicate that the SNCF is more important than the SSCF 
[14-15]. This is because the plastic SNCF maintains a 
value much greater than unity while the plastic SSCF 
decreases towards unity. 

 There have been many studies used to calculate the 
stress and strain at the notch root under static and cyclic 
tensile loading using Neuber’s rule [13, 16-21], Glinka’s 
method [18-19, 21-22], and linear rule [13, 17, 19, 23]. 
The predicted values have been compared with finite 
element and experimental ones. The results of these 
comparisons indicate that there is no rule which can 
accurately predict the magnitude of the axial strain at the 
notch root. Particularly, in notched rectangular bars, the 
accuracy of the prediction decreases with increasing 
thickness. This is because the conventional strain-
concentration factor (= maximum axial strain/average or 
nominal strain) is defined under uniaxial stress state while 
axial strain at the notch root occurs under triaxial stress 
state [14, 15].  Strain-concentration factor should thus be 
defined under triaxial stress state at the net section [14- 
15]. 

A new SNCF has been proposed under the axial tension 
[14].  This new SNCF has been defined under triaxial 
stress state at the net section.  This has enabled new SNCF 
to provide reasonable values consistent with the concave 
distributions of the axial strain on the net section [14-15].   

Moreover, this new SNCF has removed the 
contradiction in conventional SNCF having values less 
than unity in spite of the concave distributions of the axial 
strain under elastic-plastic deformation.  The nominal 
strain of the conventional SNCF, as described above, has 

been defined under the uniaxial stress state.  The uniaxial 
stress state is completely different from the stress state at 
the net section, namely, the triaxial stress state [14-15].  
This causes the above contradiction of the conventional 
SNCF.  This means that the SNCF for any type of loading 
must therefore be defined under the triaxial stress state at 
the net section.  This is because the axial strain at the notch 
root occurs under the triaxial stress state.  

The effect of notch depth on the SNCF and SSCF under 
static tension and under pure bending has been studied by 
[15,24,25-26].  

The specimens employed are circumferentially U-notch 
cylindrical bars for static tension and rectangular bars with 
single-edge U-notch for pure bending.  The results indicate 
that the new SNCF is more reasonable than the 
conventional SNCF and SSCF.  Therefore, this newly 
defined SNCF must be applied to different types of 
notches or geometries and different types of loading. 

Some studies examined the interference effect on the 
elastic SSCF of the flat bars with double U- or 
semicircular notches under tension.  The obtained relations 
between the elastic SSCF and the notch pitch have been 
published and used for engineering design [3].  These 
studies show that SSCF subjected to interference effect is 
less than the SSCF of a single notch. Few studies have 
been carried out on the interference effect on the elastic 
SSCF of cylindrical bars with double U- or semicircular 
notches under tension.  Moreover, only two studies have 
been performed on the interference effect on strength such 
as yield point load, ultimate tensile strength, and 
deformation properties of notched bars under tension [27- 
28]. In these studies, the interference effect has also been 
discussed on the elastic SSCF of cylindrical bars with 
double U-notches under tension.   

Unfortunately, the interference effect on elastic and 
elastic-plastic new SNCF has not been evaluated. In this 
paper, the cylindrical bar double circumferential U-notches 
is employed to study the interference effect on the elastic-
plastic new SNCF.  

2. Strain-Concentration Factor under Static Tension 

For tensile loading, the new strain-concentration factor 
(SNCF) has been defined as the ratio of the maximum 
axial strain at the notch root (εz)max to the new average 
axial or new nominal strain (εz)av

new[14] . 
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Since the maximum axial strain at the notch root is 
independent of definition, then the new SNCF is 
introduced by a new definition of the average axial strain 
(εz )av

new.  For circumferentially notched cylindrical bars (εz 
)av

new
 is defined as follows [14]: 
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where s = r/rn. In the elastic level of deformation, 
(εz)av

new
 can be transformed into the following equation: 

 (3) 

Where E and ν are the Young’s modulus and Poisson’s 
ratio, respectively. Equation (3) can be rewritten as 
follows: 

 ( )
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     (4) 
 

This equation indicates that (εz )av
new is defined under 

the triaxial stress state at the net section.   
It should be noted that (εz )av

new, given by Eq. (2), is 
defined under the triaxial stress state also in plastically 
deformed area at the net section.   

This is because of the fact that plastic component of the 
axial strain is directly related to the triaxial stress state, as 
is indicated by the theory of plasticity.  Since the plastic 
deformation develops from the notch root; i.e. σeq> σY, the 
newly defined average axial strain has been calculated 
using the incremental or flow theory, which relates the 
stresses to the plastic strain increments. In the plastic 
deformation, the strains in general are not uniquely 
determined by the stresses but depend on the entire history 
of loading.  The definition under the triaxial stress state 
gives reasonable results consistent with the concave 
distribution of the axial strain at any deformation level 
[14-15, 24-25]. 

The conventional SNCF under static tension has been 
defined as follows  

con
avz

maxzcon

)(

)(
  

ε

ε
ε =K  (5) 

Where (εz)max is the maximum axial strain at the notch 
root and (εz)av

con is the conventional average axial strain.  
This conventional SNCF has been defined under uniaxial 
stress state at the net section. This is because the 
conventional average axial strain (εz)av

con has been defined 
under uniaxial stress state [13-14]. In elastic deformation, 
the axial stress σz at the notch root (σz)max is much greater 
than (σz)av, and the equivalent stress at the notch root 

(σeq)max is a little lower than (σz)max under the biaxial 
tensile stress state. This indicates that the small plastic 
deformation occurs around the notch root even in the range 
(σz)av ≤ σY when (σz)av approaches σY. Even in this range 
(εz )av

con is given by 

E
avzcon

avz

)(
)(

σ
ε =  (6) 

This equation indicates that the conventional definition 
has neglected the effect of tangential σθ  and radial stresses 
σr. On further development of plastic deformation, i.e. in 
the range (σz)av > σY, (εz )av

con is determined using the 
uniaxial true stress–total strain curve σ = ƒ(ε). The reason 
for using this curve is that (εz )av

con is defined under the 
uniaxial stress state, and (σz)av is based on the 
instantaneous area of the net section. The conventional 
average axial strain is therefore given by 

}){()(
avz

1con
avz σε −= f  (7) 
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Figure 1.   Specimen geometries. 

3. Specimen Geometries 

The employed cylindrical bar with double 
circumferential U-notches is shown in Fig.1.  The net-
section diameter do of 3.34 mm, and the gross diameter Do 
of 16.7 mm were selected to give the net-to-gross diameter 
ratio do/Do of 0.2.  Figure 1 shows that the specimen length 
is expressed as (2Lo+2lo), where 2Lo is the unnotched 
length from the notch center to the loaded end, and 2lo is 
the notch pitch or the distance between the centers of the 
two notches.  The unnotched length is held constant, while 
the half notch pitch lo is varied from 0.0 to 25 mm to 
examine the interference effect of the double 
circumferential U-notches. It should be noted that the 
notch pitch lo= 0.0 mm represents the cylindrical bar with 
a circumferential U-notch, perpendicular to the axial 
direction.  Two notch radii ρo of 0.5 and 2.0 mm are 
employed to vary the notch sharpness do/2ρo.   

4. Finite Element Mesh for Double Circumferential U-
Notches 

Figure 2 shows a finite element mesh of one quarter of 
a notched specimen with double circumferential U-
notches. An eight-node axisymmetric isoparametric 
quadrilateral ring element, with biquadratic interpolation 
and full integration - type 28 in MARC classifications, is 
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5. Material Properties 

The materials employed are an Austenitic stainless 
steel and an Ni-Cr-Mo steel.  Young's modulus E, 
Poisson's ratio ν and the tensile yield stress σY are listed in 
Table 1.  The true stress-plastic strain curves were 
obtained from tension tests. In order to express the stress-
strain curve accurately, the obtained relation was divided 
into a few ranges of plastic strain, and in each range the 
following fifth-degree polynomial was fitted: 

 

employed.  This type of element uses the nine integration 
points, i.e. Gauss points.  

ol oL

2oD

   
5
p5

4
p4

3
p3

2
p2p1o εεεεεσ CCCCCC +++++=  (8) Figure 2.   Finite element model. 

The values of these coefficients in the plastic strain 
ranges used are also listed in Table 1.  Figure 3 shows the 
true stress-plastic strain curves given by these 
polynomials. 

The FEM calculations were performed under the 
axisymmetric deformation. This deformation was given 
under the condition that the axial displacement at the gross 
section in the center of the notch pitch and the radial 
displacement at the central axis are zero.  The increments 
of the axial displacement were applied at the right end of 
the unnotched part.  The magnitude of the increment was 
small enough to provide an elastic solution for the first few 
increments in each notched specimen. 

6. The Deformation Parameter 2ln(do /d ) 

The measure of deformation is required when 
comparison is made among distributions of stress and 
strain between different deformation levels, different 
materials, and different notch geometries, i.e. pitches. The 
degree of deformation 2ln(do/d) of notched cylindrical 
specimens can be expressed by the magnitude of the 
deformation at the net section.  This is because fracture 
always occurs at the net section. This measure of 
deformation is obtained from the assumptions of the 
uniform deformation in the immediate vicinity of the net 
section and the volume constancy in this part.  The 
assumption of the volume constancy can be applied only to 
plastic strain. 

The elastic strain component of the axial strain is thus 
assumed to be negligible compared t the plastic strain 
component in the immediate vicinity of the net section.  
This means that the element Ao × δlo deforms to the 
element A × δl under the conditions of the volume 
constancy and the uniaxial stress state, where Ao,  A,  
δlo, δl are the initial and current areas and the initial and 
current lengths of the element.  The volume 
constancy, lAlA δδ oo ×=× , gives the engineering axial 
strain of this element ez

 

Figure 3. True stress – plastic strain curves. 
2

o
o

o
z )(

δ
δ1 dd

A
A

l
le ===+  (9) All of the current calculations were carried out using 

MSC. Marc software. In elastic deformation, the stress-
strain relationship is linear while it is nonlinear in plastic 
deformation. The program was developed on the basis of 
displacement method. After the start of plastic 
deformation, the nonlinear relations are used, and hence 
equations should be solved incrementally. Iterations are 
performed within each increment to satisfy the equilibrium 
and convergence at the end of each stage.  In order to 
ensure the accuracy of the results and their independence 
with respect to the number of nodes used in the 
discretization process, several meshes were tested. A grid 
independent solution study was made by performing the 
simulations for different meshes. 

The logarithmic axial strain is thus given by  
2

t z o oln( 1) ln( ) 2ln( )= + = =e d d dε d  (10) 

This obtained variable 2ln(do/d) can be a measure of 
the deformation parameter at the deformation levels where 
the elastic strain component is much less than the plastic 
one.  It also plays the role of an average axial strain 
because a uniform deformation or uniaxial stress state is 
assumed.  Moreover, the ratio do / d represents the 
magnitude of the decrease in the net diameter under tensile 
deformation at any deformation level.  This means that 
2ln(do/d) can be used as a measure of deformation from 
infinitesimal to large deformation  [14-15].  
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Table 1.  Mechanical properties and polynomial coefficient. 

Figure 4. Variations of the new SNCF with deformation for ρο = 
0.5 mm 

7. Interference Effect on the New SNCF( ) K new
ε

The variations in the new SNCF Kε
new with 2ln(do/d) 

are given in Figures 4 and 5. The new SNCF is constant 
inelastic deformation, and the range of 2ln(do /d) for this 
constant value increases with increasing notch radius.  It 
also increases with increasing notch pitch up to lo ≈ 0.5 
mm. On further increase in the notch pitch, this range 
decreases and becomes nearly the same as that of the 
single circumferential U-notch. As plastic deformation 
develops from the notch root, the new SNCF increases 
from its elastic value to its maximum, and then decreases 
on further plastic deformation.  Figures 6(a) and (b) show 
the relation of the elastic Kε

new with half notch pitch lo and 
with the ratio (lo/ Lo). The elastic Kε

new rapidly decreases 
from its value at lo = 0.0 mm and reaches its minimum at lo 
≈ 0.5 mm.  On further increase in lo, the elastic Kε

new 
gradually increases and finally reaches the value of the 
circumferential U-notch (lo = 0.0 mm) at lo = 5 mm and 2 
mm for ρo= 0.5 and 2 mm, respectively. Beyond this value 
of lo, the elastic Kε

new is nearly constant up to lo = 25 mm, 
the maximum half notch pitch in the FEM calculations. 
The elastic Kε

new in the range 5 ≤ lo ≤ 25 mm are nearly 
equal to the elastic Kε

new of the circumferential U-notch.  
This indicates that the interference effect on the elastic 
Kε

new is extremely strong in a small range of lo and nearly 
vanishes beyond lo ≈ 5.0 mm. It should be noted that the 
same results have been obtained for ρo= 2.0mm.mm. 
However, the interference effects disappears in the range lo 
>2.0 mm. 

Figure 7 shows the variation of the new average axial 
strain or new nominal strain (εz)av

new and the maximum 
axial strain (εz)max with deformation. It is clear that the 

 

Material 

Figure 5. Variations of the new SNCF with deformation for ρο = 
2.0 mm. 

 values of (εz)av
new and (εz)max  for at any level of 

deformation for lo = 0.5 mm are less than that for lo > 
0.5mm. Figures 8 and 9 show that the axial strain has 
concave distribution on the net section for all notch pitches 
employed. Particularly, the rate of the increase in the axial 
strain through the net section increases with increasing 
notch pitch. The axial strain value at the notch root; i.e. the 
maximum axial strain, increases from it minimum value 
for lo = 0.5 mm and reaches maximum value for lo = 0.0 
mm. This indicates that the severe interference effect is 
more pronounced in the range 0.0 <  lo ≤ 5.0 mm.  

 
The tensile load P is calculated using the following 

equation: 

AdAP zA z  )(  avσσ =∫=  (11) 

Where A (= π/4 d2) is the current net-section area.  
Therefore, the tensile load P can be related to the 
deformation parameter 2ln(do/d)  by 
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The variation in the tensile load with deformation is 
shown in Fig. 10. The current results indicate that the rates 
of increase in the tensile increase with increasing notch 
pitch. This indicates that the severity of the notch increases 
with increasing notch pitch. As a result, the single 
circumferential notch gives more strain concentration than 
the double circumferential U-notches, especially when the 
notch pitch is less than 5 mm. This essentially attributed to 
rate and direction of development of deformation from the 
notch root. That is, when the double notches are closed to 
each other, the deformation spreads in inclined direction 
from the notch root to the pitch center, as shown in Figures 
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(a) 

(b) 

Figure 6. (a) .Variations in elastic new SNCF half notch pitch lo, 
(b). Variations in elastic new SNCF with the ratio (lo/Lo). 

Figure 7.  Variations of (εz)max and (εz)av
new with deformation. 

 
11, 12 and 13. It is evident from these figures that the 

severest interference effect occurs when the notch pitch is 
nearly equal to less than 5 mm.  A severe notch is usually 
understood as a notch having a large strain concentration.  
This occurs when the deformation is localized at and 
around the notch tips. This localization of deformation at 
the notch root is prominent for notch pitches greater than 5 
mm; i.e. for notches that can be considered as single 
circumferential U-notch.  
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Figure 10. Variations of the tensile load with deformation for ρο = 
0.5 mm. 

It has been proved by the author in previous article that 
the relations between Kε

new with P/PY are independent of 
the stress – strain curves [29]. Basically, the deformation 
parameter is related to the tensile load. Therefore, the 
parameter �;  the ratio of deformation parameter to that at 
yielding at the notch root)is introduced here to eliminate 
the effect of stress – strain curves. 
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 Figure 14 shows that the relationships of Kε
new versus 

η are nearly independent of the stress-strain curve.   

Figure 11. Distributions of axial strain on the net section of a 
single circumferential U-notch with ρo = 0.5 mm, (a).Initial 
yielding at the notch root 2ln(do/d) = 0.0000485, (b) . 2ln(do/d) = 
0.000376 , (c). 2ln(do/d) = 0.000645,(d). 2ln(do/d) =0.00121 . 

Figure 12.   Distributions of axial strain on the net section of 
double circumferential U-notch with ρo = 0.5 mm and lo = 0.5 mm 
(a). Initial yielding at the notch root 2ln(do/d) = 0.00046, 

 (b).  2ln(do/d) = 0.00074,(c). 2ln(do/d) = 0.00181, (d). 2ln(do/d) = 
0.00413. 

Figure 13. Distributions of axial strain on the net section of a 
double circumferential U-notch with ρo = 0.5 mm and lo = 4.0 mm 
 (a) Initial yielding at the notch root 2ln(do/d) = 0.00018274, 
 (b)  2ln(do/d) = 0.0023982, (c)  2ln(do/d) = 0.012380. 

As a result, the effect of the rate of strain hardening is thus 
almost negligible on the variation of Kε

new with 2ln(do /d). 
This indicates that the main factor affecting the variation 
of Kε

new with 2ln(do /d) is the magnitude of yield stress. 
The only factor that affects the shape of Kε

new with η curve 
is the notch geometry. On the other hand, the stress-strain 
curves of the ferrous materials used here are very different 
from each other. This suggests that any ferrous material 
should have the same variation of Kε

new with η. 

8. Conclusions 

The interference effect on the new SNCF has been 
studied for notched cylindrical bars with double 
circumferential U-notches. The following conclusions can 
be drawn: 
1. The interference effect on the elastic SNCF is 

prominent in the range 0.0 < lo < 5.0 mm for notch 
radius of 0.5 mm while it is prominent in the range 0.0 
< lo < 2.0 mm for notch radius of 2.0 mm. 

2. The direction of development of deformation from the 
notch radius is strongly affected by the notch pitch. 
Particularly, the deformation develops in inclined 
direction from the notch root to the center of the pitch. 
On the other hand, the deformation development is 
symmetric about the center of the net section for single 

circumferential U-notch (lo  = 0.0 mm)  and double 
circumferential U-notch with  lo  > 5.0 mm. 

3. The new SNCF increases from its elastic value to its 
maximum as the plastic deformation develops from the  

notch root. The rate of increase in the new SNCF from its 
elastic to the maximum value decreases with decreasing 
notch pitch. The current results indicate that plastic 
deformation capacity of the notched bars is more 
pronounced as the notch pitch decreases.    
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Figure 14. Variation in the new SNCF with non-dimensional 
parameter η for ρo = 0.5 mm. 
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