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Abstract 

An Autonomous Mobile Robot is an artificially intelligent vehicle capable of traveling in unknown and unstructured 
environments independently. Among the proposed approaches in the literature to handle the navigation problem of a mobile 
robot is the simple fuzzy reactive approach. This approach, however, occasionally suffers from two major problems, i.e., 
escaping from trap situations and the combinatorial explosion of the if-then rules in the inference engine. This paper presents 
a neuro-fuzzy reasoning approach for mobile robot navigation. The proposed approach has the advantage of greatly reducing 
the number of if-then rules by introducing weighting factors for the sensor inputs, thus inferring the reflexive conclusions 
from each input to the system rather than putting all the possible states of all the inputs to infer a single conclusion. Four 
simple neural networks are used to determine the weighting factors. Each neural network is responsible for determining the 
weighting factor for one sensor input. Simulation results are presented to demonstrate the merits of the proposed system. 
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1. Introduction* 

The ability of a mobile robot to navigate in unknown 
and unstructured environments by relying only on its 
sensory system is regarded as the key issue in an enormous 
number of research publications during the past 15 years 
[1]. In general sensor-based data acquired by the mobile 
robot presumably provides the necessary information to 
determine the appropriate control actions to the actuators 
so that the mobile robot can travel safely in cluttered 
environments with static and/or moving obstacles. In order 
to achieve its goal, the robot is usually required to 
determine in real-time a safe and smooth path from a 
starting location to an end location (target). Consequently, 
the main issues that need to be addressed in mobile robot 
navigation are reactive obstacle avoidance, and target 
acquisition [2]. It is well known that classical robot control 
methods that are based on precise models are only 
appropriate for industrial mobile robots that are designed 
to perform simple tasks and operate in structured and 
known environments. However, uncertainty is a major 
problem in mobile robot navigation process, and a robot is 
expected to deal and react robustly with present 
environment.  

The evolvement of soft-computing paradigms have 
provided a powerful tool to deal with mobile robot 
navigation process, which exhibits incomplete and 
uncertain knowledge due to the inaccuracy and 
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imprecision inherent from the sensory system [3,4]. 
Among all the soft-computing methods fuzzy logic based 
decision-making and neural networks have been found to 
be the most attractive techniques that can be utilized for 
this purpose. Fuzzy system is tolerant to noise and error in 
the information coming from the sensory system, and most 
importantly it is a factual reflection of the behavior of 
human expertise. In general, there are two approaches to 
the application of fuzzy logic in mobile robot navigation, 
namely, behavior-based approach [5-9] and classical fuzzy 
rule-based approach [1, 10-17]. However, the design of 
fuzzy logic rules is often reliant on heuristic experience 
and it lacks systematic methodology, therefore these rules 
might not be correct and consistent, do not possess a 
complete domain knowledge, and/or could have a 
proportion of redundant rules. Furthermore, these fuzzy 
logic rules can not be adjusted or tuned on real-time 
operation, and the off-line adjustment of their parameters 
is a time consuming process. Another problem could be 
raised when better precision is needed which is the huge 
expansion in the fuzzy rule-based system. Several 
approaches have been proposed in the recent literature to 
approach the above problems. A new grid-based map 
model called “memory grid” and a new behavior-based 
navigation method called “minimum risk method” was 
proposed by [18]. An integrated fuzzy logic and genetic 
algorithmic approach was presented by [19]. A hybrid 
controller that includes a support vector machine and a 
fuzzy logic controller was proposed by [20].   

On the other hand, several successful reactive 
navigation approaches based on neural networks have been 
suggested in the literature [21-27]. In spite of the different 
suggested network topologies and learning methods, 
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neural reactive navigators perceive their knowledge and 
skills from demonstrating actions. Therefore, they suffer 
from a very slow convergence, lack of generalization due 
to limited patterns to represent complicated environments, 
and finally information encapsulated within the network 
can not be interpreted into physical knowledge. 

Recently the role of neural networks has been found to 
be very useful and effective when integrated with fuzzy 
control systems to produce what is called Neuro-fuzzy 
systems, and sometimes called fuzzy neural networks. 
Neuro-fuzzy systems provide an urgent synergy can be 
found between the two paradigms, specifically the 
capability to mimic human experts as in fuzzy logic, and 
learning from previous experience capability as in neural 
networks. In general, neuro-fuzzy systems can be 
classified into two categories, adaptive neuro-fuzzy 
inference system and hybrid neuro-fuzzy systems. The first 
category is the most widely used neuro-fuzzy systems, and 
they are designed to combine the learning capabilities of 
neural networks and reasoning properties of fuzzy logic. 
The main function of neural network is to learn about the 
fuzzy inference system behavior and uses this knowledge 
to adaptively modify its parameters [ANFIS, and others]. 
The adaptability of the fuzzy inference system can be 
achieved by either rule base modification and/or 
membership functions modifications. Rules can be 
generated, modified, and/or eliminated, while membership 
functions of the input variables can adjusted and tuned by 
scaling mechanism. The basic idea behind the use of the 
second category is to replace all or parts of the basic 
modules that builds a FIS. The only advantage that can be 
gained from such arrangements is the high processing 
speed, presuming that a hardware implementation of such 
neural networks exists. 

In this paper a new approach to the design of a simple 
hybrid neuro-fuzzy navigation system is described. The 
suggested system has two apparent advantages. First, the 
if-then rule base is replaced by a set of simple neural 
networks. Second, inference is on the reflexive 
conclusions from each input to the system, rather than 
putting all the possible states of all the inputs to infer a 
single conclusion. Four parallel simple neural networks are 
utilized to generate weighting factors for the distance 
readings acquired by the robot’s sensory system. These 
weighting factors represent the degree of collision 
avoidance by the robot from a certain side. These 
weighting factors are then treated as fuzzy values that are 
input to a defuzzifier to come up with a crisp value for the 
robot’s steering angle and speed. 

2. Experimental Prototype 

SALIM, Simple Autonomous LIght weight Mobile 
robot, which was constructed at the authors’ universities, 
has been used to conduct practical experiments. SALIM 
has a cylindrical shape with a radius of 30 cm, and travels 
at a maximum speed of 8m/min. The robot has two 
independent wheels, driven by geared PM DC motors, 
located at the ends of an axis near to one of the ends of the 
circular base, and one free caster at the other end of the 
base. Such arrangement provides a simple and effective 
differential-velocity steering control by varying the applied 

voltage to the motors. The motion control of the two PM 
DC motors is accomplished by a simple motion control 
board designed by the authors, which consists a full bridge 
chopper circuit, and PIC16f877 micro-controller. The 
advantage of using this micro-controller is that it accepts 
velocity commands from a remote computer and to control 
two DC motors independently. 

Three groups of ultrasonic sensors are mounted at the 
front, and at the two ends of the central axis of the robot, 
where the right and the left sensors are directed at 45° 
from the central axis as shown in Figure 1. Target's 
orientation with respect to the center of the robot is 
obtained by an electronic compass. The actual angle 
between the robot frontal axis and the target can be found 
by simple manipulation to the robot's heading angle, which 
is updated instantaneously by the microcontroller, and that 
measured by the electronic compass. According to 
instantaneous value of this angle another ultrasonic sensor 
is utilized to detect the existence of any obstacle in the 
virtual target direction. This sensor is allowed to rotate, 
using a small stepper motor, in the range (-5° to 5°) with 
respect to the frontal axis of the robot. The reason in 
mounting the ultrasonic sensors in such arrangement will 
be mentioned in section (3). The error eliminating rapid 
ultrasonic firing (EERUF) method is used to minimize the 
error in distance measurements due to the noise that affect 
the ultrasonic sensors, and the crosstalk problem was 
eliminated by using alternating delays method.  

 

(a) 

(b) 

Figure 1: Schematic of SALIM with sensor locations, a, b . 
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3. Navigation Process 

Autonomous mobile robots at least need to achieve a 
simple goal of traveling safely and purposefully from one 
location to another in an environment that is unstructured 
and subjected to unpredictable changes. Like human 
beings, AMR should be self-reactive in the real world 
through decisions produced by a real-time navigation 
system. The reactions to the perceived surrounding can be 
inferred from either reflexive behavior or logical behavior. 
In general, the robot navigation problem is decomposed 
mainly into goal reaching and/or obstacle avoidance 
problems. 

A typical trajectory of a mobile robot when navigating 
through an environment with unknown obstacles cannot be 
generated by the reactions to the sensed obstacle alone, but 
the direction of the target with respect to the robot should 
be considered. Depending on the location of obstacles with 
respect to the robot together with the robot's orientation 
with respect to the target, the navigation system should be 
capable of generating the right decisions to enable the 
robot to perform the necessary maneuvers to avoid the 
obstacles and not losing its sense of orientation towards 
the target. If the target reaching and obstacle avoidance 
behavior to be integrated together, the reactions of the 
robot can be categorized into four main types. If the robot 
is moving and it is not sensing any obstacles in its vicinity, 
or the obstacles are not blocking the target, then it can be 
said that robot is in the free-heading mode Figure 2(a). The 
second scenario is called partial-front blocking mode. In 
this situation the lines of attraction force due to the target 
will be disturbed and bend over the obstacle, therefore the 
turning reaction of the robot will be towards the varying 
direction of these lines, even if it moves away from the 
target, until it passes the obstacle and change its mode to 
the free-heading reaction mode, as shown in Figure 2(b).  

 

Figure 2: Typical Trajectory of a Mobile Robot While Avoiding 
Obstacles. 

In the case of sensing an obstacle close to one of the 
robot sides that is blocking the straight-line path towards 
the target from the current position of the robot for some 
distance, as in the robot will be influenced by the side-
blocking mode. In this case the lines of attraction force due 

to the target will be disturbed and bend over the obstacle 
as in the previous case except that it will follow the 
contour of the obstacle as shown in Figure 2(c). Therefore, 
the robot will move along this line while keeping a safe 
distance from the obstacle until it reaches the bent part of 
the line to change its mode to the free-heading mode. The 
final situation that might face the robot is when it is 
trapped due to the target attraction by a wide obstacle. The 
robot may make a significant turn to the left or to the right, 
and the robot here is under the total-front blocking mode. 
Once the robot turns to one of the two directions it will be 
then under the influence of side-blocking mode, and it will 
proceed in that direction while keeping a safe distance 
from the obstacle until it reaches the of obstacle’s end and 
again change its mode to the free-heading mode, as shown 
in Figure 2(d). 

3.1. Navigation Methodology 

When a mobile robot is traveling towards its final 
target it might face a variety of obstacles having different 
shapes and they may be randomly located in the path of 
the robot. Often in the literature, static obstacles can be 
classified into eight basic categories as shown in Figure 3. 
When fully conscious attention is paid to the environment, 
a navigation system could deal with large amounts of input 
information concerning near obstacles, and it should react 
instantaneously to provide a robust real-time reactions 
towards the foreseen surrounding. Therefore, its behavior 
should be how to avoid these obstacles, which simply can 
be answered move away from close obstacle by desired 
safety distance. 

case (5) case (6) case (7) case (8)

case (1) case (2) case (3) case (4)

Figure 3: Classification of Obstacle Configurations. 

Various algorithms have been proposed to attack the 
problem of generating collision free trajectories for a 
mobile robot by utilizing neuro-fuzzy systems. One of the 
methods used in designing a neuro-fuzzy navigation 
system, is based on training a neural network patterns of 
sensor readings corresponding to a variety of obstacles. 
Usually in such a methodology complete operator's 
experience is provided to the network and its training is 
supervised and performed off-line. Alternatively, partial 
operator's experience is provided to the network and its 
training is supervised and performed off-line at the first 
stage, and then navigator performance is enhanced by 
using on-line reinforcement learning. It should be noted 
that a robot may face during its course of navigation a 
variety of obstacles of different and complicated shapes 
that could be present in the surrounding, and they could be 
randomly located and oriented. Hence a huge number of 
patterns are required for the obstacle recognition 
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methodologies, or a very long time will be required for 
unsupervised learning methodologies. ANFIS 

From the above discussion, it is believed that it is better 
to consider the navigation process to be based on a very 
simple human experience to generate the reaction of the 
mobile robot towards the surrounding through neuro-fuzzy 
reasoning. Such system is based on two facts, first humans 
cannot get used to all the possible arrangements of 
obstacles and second cannot build a huge fuzzy model that 
contains all the possibilities of the ‘If…Then…’ rules. 
Instead, they give weighting factors to which direction 
they are going (left, ahead, right) and what their speed 
should be, and this possibly can be made based on 
information from the different senses. The neuro-fuzzy 
reasoning system suggested in this work, see figure 5, 
consists of a neural network/s responsible for generating 
independent certainty weighting factors for the three basic 
directions (left, ahead, and right) corresponding to 
instantaneous sensory information. These decisions are 
then combined, with the same level of simplicity by a 
diffuzifier, to obtain a final conclusion. The main objective 
of the proposed method is to reduce the size and time 
required by a fuzzy inference system by combining the 
learning capability in neural networks and reasoning 
capability in fuzzy inference systems, without affecting the 
efficiency and performance of the navigation system when 
compared to other classical implementations of reactive 
fuzzy and neuro-fuzzy navigators.  

3.2. Learning Methodology and System Structure 

For the first glance, the neuro-fuzzy system architecture 
was intended to have a multi-layer standard feed-forward 
neural network. The inputs to the NN are sonar data, 
representing the distribution of obstacles in foreseen 
surrounding, and the virtual angle between the robot and 
the target, while the output that should be produced from 
the network are certainty weighting factors for the three 
basic directions and a weighting factor for the target 
orientation. The training set was supposed to be obtained 
during driving sessions of the robot by a human operator in 
different situations, while sensed distances and the four 
weighting factors are to be stored during these sessions. 
Two factors resulted in total failure of such method. The 
first was the difficulties that faced all the operators to give 
four answers corresponding for the certainty weighting 
factors. The second factor is related to that a good quality 
of learning requires huge, significant and complete training 
examples. In these training examples human operators 
should guarantee the consistency of their reactions without 
any contradictions.  

Under such difficulties an alternative learning approach 
was considered. The approach is based on a divide-and-
concur strategy; where instead of having single multi-input 
neural network four three-layer neural networks were used. 
Each network is designed to receive only the distance 
measured by the corresponding group of ultrasonic sensors 
from the robot to any possible obstacle that may detected 
in that direction and generates a weighting factor that 
represents the degree of certainty to avoid the collision 
with the obstacles at that side. To generate the required 
data to train the neural networks a group of operators were 
required to answer a questionnaire asking them to 
represent their judgment to the measured distance and the 

degree of certainty weighting factor in a fuzzy format. 
Each measured distance was represented by five fuzzy 
values, Very Far (VF), Far (F), Medium (M), Close (C) 
and Very Close (VC), while the weighting factors were 
also represented by five fuzzy values, Very High (VH), 
High (H), Medium (M), Low (L) and very Low (VL). By 
averaging all the answers, the universe of discourse of both 
variables and their representation in terms of fuzzy sets 
were defined as shown in Figure 4. Consequently, a single 
input single output fuzzy system designed to provide a 
mapping function between the measured sonar distance 
and certainty weighting factor, from which a training data 
for the network training were obtained. 
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Figure 4: Fuzzy sets representations of (a) sonar measured 
distance, (b) weighting factor. 

The structure of the proposed system is shown in 
Figure 5. Four input variables are required to provide the 
necessary information for the navigation system to safely 
drive the mobile robot to reach the desired target. These 
inputs are: distances df, dr, and dl, measured by three 
ultrasonic sensors. These distances are the distances 
between the robot and any possible obstacle with respect 
to the local front, right, and left directions of the robot, 
respectively. The forth input, dvt, is the distance directed in 
a global virtual direction between the robot and the target. 
The outputs of the system are the steering angle θ and the 
speed of the robot ν. The idea of using a virtual target 
orientation instead of the real orientation comes from a 
realistic representation to the behavior of expert driver, 
where it is impossible for a driver to abandon his attention 
to the frontal sight when leaving a one-sided blocked 
target behind him and concentrates on the real target 
orientation. Under this situation the driver put some 
concentration towards a virtual orientation at the same side 
of the target, which should not exceed a certain limit in the 
range of the frontal sight. 
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Each distance variable from the corresponding sensor is 
then input to a simple neural network to generate a 
weighting factor that represents the degree of collision 
avoidance of the robot from the side of the corresponding 
sensor. The output weighting factors of each network were 
values between 0 and 1, with 0 value stating that the robot 
is very close to an obstacle and a value of 1 stating that the 
robot is very far from the obstacle. The structure of the 
four neural networks is identical and is depicted in Figure 
6. Each network consists of a single input node, a single 
output node, and a single hidden layer with ten nodes. 
Back propagation has been used to train the networks. The 
middle block in the system is a simple defuzzifier that 
receives the four weighting factors coming from the 
previous neural network subsystems, and treats these 
factors as the degree of fulfillment for the corresponding 
fuzzy values of the steering angle of the robot. The Center 
of Area method is used in this block to obtain the final 
crisp value for the steering angle of the robot. The 
membership functions for the fuzzy values of the output 
variable θ are shown in Figure 7. Only three of the fuzzy 
values are shown in Figure 7, i.e., the turning angle to the 
left, center, and right, respectively. The fuzzy set that 
represents the steering angle towards the target orientation 
is similar except that it is designed to be floating with its 
center moving in the range [-30°, 30°]. 

Once the final value for the steering angle θ is 
obtained, the robot’s speed can be computed by a two-
input neural network as shown in Figure 8. The inputs to 
the neural network in Figure 8 are the steering angle 
θobtained from the previous stage and the distance dt that 
represents the distance between the robot and the obstacles 
with respect to a virtual target. The input distance dt is 
used to slow down the robot as it approaches the target. 
The training sets for the neural network in Figure 8 were 
obtained by simulating the robot’s motions and estimating 
the required speeds of the robot for different values of dt 
and θ. 

Figure 5: Structure of the proposed system. 

4. Simulation Results 

In order to confirm the efficiency of the proposed 
method, a simulation program with a graphical user 
interface has been developed on a Pentium III personal 
computer using Visual Basic 6. The robot is depicted in 
the simulation as a circle to resemble a prototype mobile 
robot that the authors have designed and constructed for 
experimental purposes. It is noted here, that errors due to  

Figure 6: Neural network structure for weighting factors. 
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Figure 7: Fuzzy set definition for the output variable θ. 

Figure 8: Neural network structure for speed calculation. 

wheel slippage and other motion errors were not 
considered in the simulation. Distance measurements were 
acquired by four ultrasonic sensors mounted on the robot. 
Each sensor was modeled by a number of rays within a 
sector region of a wide beam-angle. The distance 
measured by each sensor is considered to be equal to the 
minimum distance obtained within the sector of each 
sensor while taking into consideration the minimum 
reliable distance that can be measured by actual ultrasonic 
sensors. Six different simulation cases are presented in this 
section to analyze the reaction behaviors of a mobile robot 
in avoiding a variety of unknown static obstacles placed 
randomly in a portion of an unknown environment. The 
aim here is to study the performance of the proposed 
approach under the most possible situations. In all these 
cases the robot is assumed to be initially moving with full  
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Figure 10: Case 1: Robot path with no obstacles. 

speed and its relative steering angle is assumed to be zero. 
The analysis of the reaction behaviors of the robot is based 
on observing the instantaneous variation of the four 

weighting factors and their influence on both the steering 
angle and speed. 

In the first case, Figure 10, the robot is initially oriented 
in an opposite direction to the target. In this case no 
obstacle is sensed by any of the four sensors. Hence, the 
values of the four weighting factors are all equal to 1 (see 
Figure 11). Consequently, the robot will be in the free-
heading mode. The immediate reaction of the robot will be 
biased to turn towards the side at which the target sensor is 
located at that instant since the Turn to Left and Turn to 
Right sets are equally scaled. The variation of the steering 
angle and its influence on speed, Figure 12, depends on the 
location of the center of the Turn to Target set, which is 
allowed to move in the range [-30, 30] depending on 
which side the target is at that instant. 
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Figure 11: Behavior of weighting factors for case 1. 
 

 
Figure 12: Behavior of steering angle and speed for case 1. 
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In the second case, Figure 13, the robot is passing 
through an empty L-shaped tunnel where the only present 
obstacles are the parallel bounding walls of the tunnel. The 
response of the robot towards the walls is influenced by 
the instantaneous variation of the weighting factors as 
shown in Figure 14.  At the first instant the level of 
cautions towards the obstacles at both sides are equal, 
while the weighting factors for the front and target sensors 
indicate that there are no obstacles in either direction, thus 
the robot will move towards the target.  As the robot 
proceeds in moving towards the target the steering angle 
will be gradually reduced because of the continuing 
increase in the difference between the right and left 
weighting factors and the fall of both front and target 
weighting factors (see Figure 15). Once the robot becomes 
close to the right wall the left weighting factor will 
rebalance the congregated right and target weighting  

Figure 13: Case 2: Robot path through L-shaped tunnel. 

factors. Thus, the robot will slightly turn to the left until it 
aligns itself to move later in parallel with the right wall. 
When reaching the end of the tunnel, the target weighting 
factor will rapidly increase to 1. Hence, the robot will 
noticeably reduce its speed for a short while until it is 
completely turned in the direction of the target. 
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Figure 14: Behavior of weighting factors for case 2. 

Figure 15: Behavior of steering angle and speed for case 2. 
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The third case, Figure 16, the robot is heading towards 

the target at full speed when a square obstacle blocks its 
path. The obstacle totally blocks the robot from the right 
side and slightly extended above the line that connects the 
location of the robot and the target. As can be seen in 
Figure 17 the first apprehension is from both the front and 
target sensors through the decreasing values of their 
corresponding weighting factors. The right sensor detects 
the presence of the obstacle, and the robot immediately 
reacts by turning gradually to the left while reducing its 
speed due to the dominance of the left weighting factor 
(see Figure18). Once the robot passes the obstacle both the 
front and the target weighting factors increase sharply.  
The right weighting factor follows and rises sharply to 
indicate the absence of any obstacle in all directions. 

Reacting immediately to this situation, the robot reduces 
its speed and turns to the right side to align itself again 
with the target direction (Figure 15). 

Figure 16: Case 3: Robot path blocked by a square obstacle. 
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Figure 17: Behavior of weighting factors for case 3. 

 

Figure 18: Behavior of steering angle and speed for case 3. 
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The next case presented is depicted in Figure 19. The 
case describes the situation when the robot is moving in a 
room while the target is in another room. The behavior of 
the robot in the beginning is similar to that in the previous 
case until the robot is faced with the corner walls. At this 
time only the right weighting factor is active will all other 
factors are zero. Consequently, the robot turns to the right. 
Once the robot turns to the right its path becomes blocked 
from both the left and front again. Hence, it keeps on 
turning to the right until the front weighting factor is 
active. The robot keeps on moving in the same direction 
until the right weighting factor is 1 at which time the robot 
turns back towards the target. Figure 19: Case 4: Robot path when target is in another room. 
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Figure 20: Behavior of weighting factors for case 4. 

 

Figure 21: Variations in steering angle and speed for case 4. 
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The case depicted in Figure 22 tests the reaction of the 
robot when trapped by a wide obstacle while the target lies 
along the robot heading direction. In this situation the 
effects of both the right and the left weighting factors will 
cancel each other, and the robot will continue moving 
along its initial heading direction. As the robot gets very 
close to the obstacle all the weighting factors fall to zero 
(see Figure 23). In this situation, an assisting rule within 
the defuzzifier is activated and the robot will turn 90° to 
the left. Immediately after activating the rule, the left 
weighting factor rises to 1, while the other factors remain 
zero for a short while. This results in getting the robot to 
turn to the left until it is away from the obstacle by a safe 
distance. The effect of the target weighting factor 
rebalances the turn to the left behavior. Once the critical 

situation is overcome, the robot behaves in a similar 
manner to that of case 3. 

Figure 22: Case 5: Robot path totally blocked by a wide obstacle. 
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Figure 23: Variations of weighting factors for case 5. 

 

 

Figure 24: Variations in steering angle and speed for case 5. 
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The final case, Figure 25, presents the situation where 
the robot is trapped by a dead-end. The behavior of the 
robot in this case is very much similar to that of the 
previous case. When faced by the dead-end, the robot 
starts turning left under the effect of the assisting rule. 
Once the robot turns left, the other side of the concave 
obstacle will block its path. Hence the robot keeps on 
turning left until it is totally away from the target. 
Furthermore, due to the narrowness of the tunnel, the robot 
will keep on moving away from target until it gets close to 
the opening. At this time the target attraction behavior 
becomes dominant and the robot turns and moves until it 
reaches the target. 

Figure 25: Case 6: Robot path when trapped by a dead-end.
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Figure 26: Behavior of weighting factors for case 6. 

 

Figure 27: Behavior of steering angle and speed for case 6. 
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5. Concluding Remarks 

A neuro-fuzzy reasoning scheme for mobile robot 
navigation has been presented in this work. The approach 
is based on decomposing a multidimensional fuzzy system 
into a set of simple parallel neural networks. This method 
relies upon finding quantifiable means to represent the 
expert’s experience, and determines a mapping from 
current state of a system to the fuzzy measures with which 
the expert’s knowledge is quantified. The concept of 
weighting factors for the sensor inputs expressing the 
reflexive conclusions of each input rather than having to 
go through a huge list of rules to infer a single conclusion 
is introduced here for the first time. Therefore, the method 
has the advantage of replacing the huge number of “If-
Then” rules by simple parallel neural networks. The 
approach was tested in a number of simulated case 
problems to demonstrate its effectiveness, and it was found 
that the results compromise with reasonable satisfaction 
the obstacle avoidance and target reaching requirements. 
In addition to that, the proposed controller showed the 
capability of a mobile robot to escape from simple traps.  
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