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Abstract 

The soft computing techniques are nowadays widely used in manufacturing industry for the modeling and optimization of 

processes parameters. The soft computing techniques give excellent predicted values which agree with the experimental 

results. In the present study, predictive model for the mechanical properties viz. ultimate tensile strength, micro hardness at 

weld nugget, and surface roughness in weld bead of friction stir weldedAA7075-T651 are developed. The adaptive fuzzy 

inference system technique is used for the development of the models. The models are developed using triangular, 

trapezoidal, Gaussian and generalized bell membership functions, and predicted values are compared. The triangular 

membership function shows minimum testing error of 19.1091, 12.3152, and 1.0018 for ultimate tensile strength, micro 

hardness at weld nugget, and surface roughness respectively. The validation experiment is performed at tool rotation speed of 

1400 rpm and welding speed of 20 mm/min in order to check the predicted adaptive fuzzy inference system output. The 

observed values obtained after the validation experiment for ultimate tensile strength, micro hardness at weld nugget, and 

surface roughness are closer to the predicted adaptive fuzzy inference system output. The scanning electron microscopy 

images with energy dispersive X-ray spectrometer analysis confirmed the homogeneous mixing of material, laminar material 

flow with the equiaxed grain (size ~260 nm to 3 µm )distribution at the weld nugget. The scanning electron microscopy 

images of fractured tensile specimen shows the large dimple with the failure of specimen in heat affected zone. 
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1. Introduction 

Friction stir welding (FSW) is a solid-state joining 

process. FSW is environment friendly, energy efficient, 

and versatile. Particularly, it can be used to join high-

strength aerospace aluminum alloys and other metallic 

alloys that are difficult to weld by conventional fusion 

welding. FSW is considered to be the most significant 

development in metal joining in a last two decade [1]. 

FSW is an ideal solution for joining aluminum alloys; 

especially for the AA2000 and AA7000 series alloys. 

High-strength aluminum alloys, such as 7XXX, are 

commonly used in defense, aerospace, and military 

applications due to its high strength and light weight. 

These alloys are difficult to weld using conventional 

fusion welding as high temperature is involved in the 

processes, hence it can be joined through FSW. FSW has 

been successfully used in joining primary structures in the 

Eclipse 500TMjet [2]. 
VijayanandRao [3] developed a model to predict the 

tensile elongation and ultimate tensile strength (UTS) for 

friction stir welded (FSWed) AA2024 and AA6061 

aluminum alloys. The models were developed using 

response surface methodology and adaptive fuzzy 

inference system (ANFIS). From this study, it was 

concluded that ANFIS predicted value has a greater 

accuracy and robustness in determining the values of 

dependent variables compared to the response surface 

methodology models. Eren et al. [4] performed a 

comprehensive review on the application of artificial 

intelligence (AI) techniques in FSW. Researchers 

attempted modeling of FSW using artificial neural network 

(ANN), machine learning, fuzzy logic, and meta-heuristic 

techniques and found prediction accuracy close to 95% 

with the experimental results. Attempts have been also 

made using ANFIS and machine learning techniques 

during FSW. Babu et al. [5] developed the model for 

prediction of mechanical properties of FSWedcryorolled 

AA2219 alloy using ANN. The genetic algorithm was 

used to determine the optimum FSW parameters. From 
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this study, it was found that ANN modeling can forecast 

the output responses with high accuracy and the least root 

mean square error (RMSE) value found from the batch 

back propagation was  0.0089991. 

Teimouri and Baseri[6] developed the prediction model 

for UTS, % elongation and hardness of FSWed aluminum 

joints using fuzzy approaches. In this study two 

approaches were used; the first approach relationships 

between inputs and outputs based on human expertise were 

models using manually fuzzy models, then artificial bee 

colony algorithm (ABC) was used to modify these models. 

From this study, it was concluded that the combination of 

fuzzy-ABC system gives more accurate results as 

compared to manually fuzzy models. Zhao et al. [7] 

investigated the bobbin pin FSW of AA2219-T87. In this 

study the empirical models were developed for UTS and % 

elongation. The calculated R-squared (R2) values for UTS 

and % elongation were 85 % and 75 % respectively. 

Choudhary et al. [8] implemented the hybrid particle 

swarm optimization (PSO) and genetic algorithm (GA) for 

optimization of submerged arc welding processes 

parameters. From this study, it was concluded that hybrid 

PSO-GA approach gives better solution than PSO and GA. 

Safeen et al. [9] developed a mathematical model for 

prediction of mechanical properties which includes impact 

toughness, UTS, and hardness of the FSWedAA6061-T6 

joints. In this study, response surface methodology along 

with central composite design was used. It was concluded 

from this study that welding speed of 70 mm/min, 

rotational speed of 1150 rpm, tool tilt angle of 3° with 

simple cylindrical pin profile, highest impact toughness, 

UTS, and hardness were all achieved. 

Ahmadnia et al. [10] developed the model to predict the 

hardness, UTS, and elongation for FSWed AA6061 and 

AA5010 joints using response surface methodology. In 

this study, desirability approach was used for the 

optimization. The obtained optimization results shows that 

at tool rotational speed of 800 rpm, welding speed of 60 

mm/min, and plunge depth of 0.25 mm/min are the 

optimal conditions which give 174 MPa UTS, 106 Hv 

hardness, and 33 % elongation. Choudhury et al. [11] used 

the integrated ANN and teaching learning based 

optimization (TLBO) soft computing modeling 

optimization to obtain the optimum processes parameters. 

In this study, UTS of the Inconel 825 super alloy joints 

produced using tungsten arc welding were optimized. 

ANN architecture with seven hidden layerneurons produce 

an effective error of 0.5% found optimum for predicting 

the UTS of the joints.  

Hayajneh et al. [12] developed the prediction of surface 

roughness in end milling using two different gene 

expression programming. In genetic programming 1 and 2 

model, the differences are their number of genes, head 

size, chromosomes, and the linking function. The R2, 

RMSE and mean absolute percentage error are obtained as 

0.923, 0.268 and 0.219 respectively, for all training set in 

genetic programming 1 model. Farouk et al. [13] perform 

the optimization of manufacturing tolerance using the goal 

programming method and the genetic algorithm.  The table 

motion error, tool path error, and tool wear error were 

optimized using non-dominated sorting genetic algorithm 

(NSGA). The zero percent rejection was obtained by the 

optimization using goal programming and NSGA 

methodology. Soori et al. [14] performed the review of 

optimization procedures of machining parameters and 

applications of the different optimization methods, such as 

fuzzy logic algorithm, taguchi method, genetic algorithm, 

artificial intelligence, artificial neural networks and 

artificial bee colony algorithm, simulated annealing, ant 

colony optimization, PSO, scatter search technique, and 

response surface methodology and harmony search 

algorithm in optimization process of machining 

parameters.  

Ismail [15] et al. used the machine learning techniques 

to detect fire fighting in power plant industry. One hidden 

layers and two hidden layers feed forward neural network 

models were developed for the prediction of occurrence of 

fire due to the impulsive burning of coal. From this study, 

it is proposed that two hidden layer feed forward neural 

network could be best fit for prediction of fire. Ning [16] 

schedule the resources in automobile part recycling using 

adaptive technique. Improved reverse PSO technique was 

used in this study. Using this methodology, the lesser 

energy consumption, highest recovery resource utilization 

rate, and the task time of about 200-400s were obtained. 

Ayun et al. [17] performed the optimization of injection 

moulding simulation parameters on performance measures 

viz. shrinkage and warpage of bone screw using PSO. The 

obtained results show that injection time, melt 

temperature, and packing time had significant effects on 

shrinkage and warpage of polylactic acid bone screws. The 

optimization results show that the shrinkage and warpage 

value improved to 2.4233% and 0.0928 mm for polylactic 

acid bone screws and 8.9592% and 0.4646 mm for 

polyglycolic acid bone screws. 

Precup et al. [18] designed the model based fuzzy 

controllers for network control systems. In this study, 

Hilbert-Huang transform was applied for variable time 

delay to smooth the signals. Later on Takafi-Sugeno-Kang 

Proportional-Integral-Fuzzy design was applied for 

temperature controlled applications. From this study, it 

was concluded that the theoretical results were matched in 

excellent manner with the real-world temperature control 

applications. Vilela et al. [19] performed the value of 

information assessment for oil and gas industry by the 

application of fuzzy inference system (FIS). In this study, 

the use of a Boolean relationship between project valuation 

and project decision is replaced by the fuzzy inference 

system, a fuzzy human thinking approach to make 

decisions. To integrate more than one criterion into the 

assessment, the coherent method is used by the FIS as 

compared with the conventional value of information 

approach. In value of information approach, if more than 

criterion is used then the contradictory outcomes will be 

obtained which conduct to unconvincing assessment. 

Božanić et al. [20] implemented neuro-fuzzy system in 

decision making for the selection of construction machine 

(selection of loader). In this study, the data for neuro-fuzzy 

system is prepared using multi criteria decision making; 

logarithm methodology of additive weighs, 

VIekriterijumsko KOmpromisno Rangiranje, Technique 

for Order of Preference by Similarity to Ideal 

Solution. The developed model provides noteworthy 

support to decision makers for several reasons in selection 

of loader. 
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Meyghani et al. [21] performed the finite element 

modelling of FSW process on complex curved plate. In 

this study, software tools such as AltairHyperworks and 

ABAQUS software are employed for the simulation of the 

processes. The results obtained from the simulation show 

the significant increase in the heat generation, which 

results in the enlargement of the shear zone. Due to the 

enlargement of shear zone, the peak temperature rises to 

almost 300 °C after 3 seconds. Kavitha et al. [22] 

performed the optimization of FSW process for joining of 

AA7079 and AA8050 aluminum alloy using response 

surface methodology. The UTS of 211.48 MPa obtained at 

optimum values at tool rotational speed is 1000 rpm, 

welding speed of 300 mm/min, tool pin diameter of 2.4 

mm, and shoulder diameter of 10 mm. Heidarzadeh et al. 

[23] developed the fuzzy model to predict the UTS and 

elongation of FSWed pure copper joints. In that study, 20 

experiments were performed for the development of fuzzy 

model. Using fuzzy prediction model, the maximum UTS 

of 276.1 MPa and elongation of 44.6% was obtained at 

tool rotational speed of 1136 rpm, welding speed of 46.75 

mm/min, and axial force of 3.34 kN. 

Jamalian  et al. [24] developed the ANN model for 

FSWed joints of AA5086-H34 plates which are reinforced 

with nanoparticles of Al2O3. The multi-pass technique by 

varying the tool pin was implemented in this study. The 

optimization results confirm that the highest UTS was 

obtained using square pin geometry which was of 303 

MPa.  Terra et al. [25] developed the models for FSW 

forces in case of square pin profile. In this study, the 

welding, tangential, transverse, and radial forces are 

demonstrated as a function of welding speeds, tool 

rotational speed and the instantaneous angle of rotation. 

The R2values acquired are 0.9828, 0.9737, 0.9944, and 

0.9881 for tangential, radial welding, and 0.9881 for the 

transverse force, which confirm the agreement between the 

models and experiments. 

Han et al. [26] developed the ANFIS prediction model 

for hot deformation processes of Ti600 alloy. In this study, 

the ANFIS was integrated with back-propagation learning 

algorithm of neural network. The predicted values of 

ANFIS for the flow stress of Ti600 titanium alloy has a 

great accuracy and with absolute relative error less than 

17.39%. Guneri et al. [27] implemented the ANFIS for the 

selection of supplier in the textile industry. The developed 

ANFIS model is robust with respect to the types of 

changes in the business. The ANFIS model is compared 

with the multiple regression model, and it is concluded that 

the ANFIS model performs better than multiple regression 

model. Naderloo et al. [28] developed the ANFIS model to 

predict the crop yield. The study includes higher number 

of input (eight inputs); two networks were trained. In 

ANFIS 1, the inputs were fertilizer, diesel fuel, and 

electricity energies, and in ANFIS 2 inputs were 

machinery, human labor, water for irrigation, chemicals, 

and seed energies. The RMSE and R2 values were obtained 

as 0.013 and 0.996 for ANFIS 1 and 0.018 and 0.992 for 

ANFIS 2, respectively. Ekici et al. [29] developed the 

ANFIS model for the prediction of consumption of energy 

by the building in cold region. It was concluded from the 

study that ANFIS was efficient in predicting energy 

consumption of different buildings with a good degree of 

accuracy  reaching 96.5% and 83.9% for heating and 

cooling respectively. 

From the literature reviewed, it has been observed that 

numerous studies reported on modelling of weld qualities 

of the FSW process. However, researchers mostly 

attempted the modelling of processes parameters to predict 

the weld qualities using statistical techniques [30]. 

However, very few studies are available on the modelling 

of the processes parameters of the FSWed AA7075-T651 

joints using soft computing techniques in the open 

literature. AA7075-T651 being low-weight and high-

strength has been widely used in aerospace, automotive, 

and naval applications. However, this alloy showed poor 

weld ability due to porosity in the fusion zone and poor 

solidification microstructure. Hence, modelling of the 

process parameters while FSW of AA7075-T651 is crucial 

for obtaining a joint with better mechanical properties. 

With this view, in the objective of the present study, to 

model the FSW processes parameters using ANFIS, to 

predict the weld qualities of FSWed AA7075-T651. In this 

study ANFIS model is developed using different 

membership functions. This paper will help the fellow 

researchers to select the best membership function and 

give the model to determine the mechanical properties of 

FSWed AA7075-T651 joints. Experiments were 

performed using the conical threaded tool varying the 

welding speed and tool rotation. Microstructural analysis 

and fracture behavior of FSWed joint is discussed for a 

better understanding of the process physics. 

2. Experiment details 

In the present study, FSWedAA7075-T651 square butt 

joints are produced. Experiments were performed on a 

universal milling machine. Two plates to be welded were 

initially squared and made free from any burr. The 

experimental setup is as shown in figure 1(a). A specially 

designed tool that provides thermo mechanical action 

along the weld direction due to its rotation and translation 

was used to get the required joint. A conical threaded tool 

pin with a constant plunge depth of 5.6 mm as shown in 

figure 1 (b) is used in the present study. The process 

parameters were selected based on the literature reviewed 

and pilot experiments. Experiments were performed under 

dry conditions and at tool rotations of 1000, 1200, 1400, 

1600, 1800 and 2000 rpm, and at welding speeds of 20, 28, 

and 40 mm/min. A total of eighteen experiments were 

performed. 

In this work, the mechanical behavior of the FSWed of 

AA7075-T651 joints is investigated in terms of the UTS, 

microhardness at weld nugget (MWN), and surface 

roughness (SR) at the center of the weld bead considering 

the effect of process parameters. The tool material used 

was H13 type tool steel and its geometry is a conical 

threaded pin type. The chemical composition of the tool 

material and workpiece material is depicted in Table 1 and 

Table 2, respectively. The UTS of base material was 

obtained as 550 MPa, with peak elongation of 9.1%. 
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The UTS of FSWed joints was measured using a 

universal testing machine. The test was performed as per 

the ASTME8M standard to obtain the transverse UTS of 

joints. Plate dimensions with positions for extraction of 

test specimens and tensile test specimens are as shown in 

figure 2(a) and (b) respectively. The MWN, was measured 

by Vicker’s microhardness tester as per the ISO6507 

standard. The diamond indenter with 136o and with a load 

of 100 grams for a dwell time of 20 seconds was used.  

The SR at the weld bead was measured by the surface 

roughness tester at 25 mm from the start of a weld, at the 

middle of the weld, and 25 mm before the end of the weld. 

An average of the three values measured at the said 

locations was noted down. The FSWed joint analysis was 

performed using field emission scanning electron 

microscope (FESEM) (Make: FEI Nova Nano SEM 450). 

The samples of size 5 x 5 mm were cut in transverse 

direction to weld line by wire electric discharge 

machining, and then it is observed under FESEM at 

different magnifications. The elemental analysis of weld 

nugget (WN) is carried out using Energy-dispersive X-ray 

spectroscopy (EDS) (Make: BrukerXFlash 6I30 

spectrometer) in conjunction with scanning electron 

microscopy (SEM) images. 

3. AdaptiveNeuro-Fuzzy Inference Systems 

Methodology 

ANFIS is a model that incorporates both the fuzzy 

logic qualitative and adaptive neural network approaches 

and overwhelms their corresponding drawbacks. It is a 

good estimator and predictor. ANFIS has capability of 

approximation equal to the neural network; hence, the 

outputs can be easily constructed with ANFIS [3].  

The ANFIS model contains five layers, and each of this 

layer is connected by numerous nodes. Each input node is 

extended by the preceding layer. The developed ANFIS 

models for UTS, MWN, and SR are presented in Figs. 3 

(a), (b), and (c) respectively. The models shows that the 

network includes m inputs (M1, …,Mm), each of these 

inputs consists of n membership functions. In the present 

model is constructed by a layer with R fuzzy rules as an 

output layer. The product of number of membership 

function (n) and number of inputs (m) gives the total 

number of layers (N), i.e., (N=n·m). The number of nodes 

in the other layer is related to the number of fuzzy rules 

(R). The details of each layer is mentioned as follows[3]. 

 
 

(a) (b) 

 

Figure 1. Friction stir welding a) Experimental setup, b) Conical threaded tool (all dimensions are in mm) 

Table 1. The chemical composition (% weight) of H13 FSW tool [31] 

Elements  Cr Mo Si V C Ni Cu Mn P S 

%  4.75 1.10 0.80 0.80 0.32 0.3 0.25 0.2 0.03 0.03 

Table 2. Chemical composition (% weight) of AA7075-T651 alloy[31] 

Elements Si Fe Cu Mn Mg Zn Ni Pb Sn Ti Cr Al 

% 0.069 0.204 1.64 0.0060 2.33 5.28 0.012 0.012 <0.0050 0.028 0.195 90.22 

 

 

 

(a) (b) 

Figure2. a) Plate dimensions showing position for extraction of test specimens, b) Tensile test specimen (all the above-mentioned 

dimensions are in mm) 
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Layer 1 (fuzzification): The crisp inputs are 

transformed into the linguistic type using membership 

functions in layer 1. The output of this layer is expressed 

as, 

𝑄𝑗
𝑖 = 𝑢𝑖𝑗(𝑋𝑖),              𝑖 = 1 … 𝑚,    𝑗 = 1 … 𝑛           [1] 

Where𝑢𝑖𝑗is the 𝑗𝑡ℎmembership function for the input. 

Layer 2 (product layer): In this layer, each fixed node 

can be obtained by multiplying the linguistic inputs, which 

were calculated in the previous layer: 

Q𝑘
2 = 𝑊𝑘 = 𝑢1𝑒1(𝑋1)𝑢2𝑒2(𝑋2) … . . 𝑢𝑚𝑒𝑚

(𝑋𝑚), 
k=1…..,R; 𝑒1, 𝑒2, … … , 𝑒𝑚 = 1, … … , 𝑛           [2] 

Layer 3 (normalized layer):For the each node the 

outputs were normalized using weighing factor as 

mentioned in equation [3]. 

Q𝑘
3 = 𝑊𝑘

̅̅ ̅̅ =  
𝑊𝑘

𝑊1+𝑊2+𝑊3+⋯..+𝑊𝑅
            [3] 

Layer 4 (defuzzification layer): Takagi-Sugeno 

fuzzy-type if–then rules were applied in this layer to the 

output of each node. 

Qk
4 = Wk

̅̅ ̅̅ fk                                            [4] 

Where, fk represents the output of kthTSK-type fuzzy 

rules which is represented as follows: 

If (𝑋1 𝑖𝑠 𝐴1 𝑒1
) and (𝑋2 𝑖𝑠 𝐴2 𝑒2

) and …….and 

(𝑋𝑚 𝑖𝑠 𝐴𝑚 𝑒𝑚
) then, 

fk ∑ pieiXi+rk

m
i=1               [5] 

Where,piei,rk 
are called as consequent parameters and 

𝑒1,𝑒2, … … , 𝑒𝑚 = 1, … . , 𝑛; 𝑘 = 1 … . . , 𝑅. 

Layer 5 (Output layer): The output modeled in the 

ANFIS is represented in this layer. 

Q5 = Y = ∑ Wkfk
n
k=1              [6] 

To check the performance of the trained ANFIS model, 

RMSE is evaluated using the equation: 

RMSE=√
1

𝑇
∑ (𝑅𝑧 − 𝐴𝑧)2𝑇

𝑧=1             [7] 

Where, T is total number of training sample, 𝑅𝑧 is the 

real output, and 𝐴𝑧 is ANFIS output in training. 

 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 3. Developed ANFIS models structure for a) UTS b) MWN c) SR 
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4. Results and Discussion 

4.1. Discussion based on ANFIS 

The ANFIS model developed in the present study is 

using MATLAB R2022a. For predicting the mechanical 

properties viz. UTS, MWN, and SR of FSW process by 

ANFIS, the model consists of mainly two phases i.e. 

training phase and testing phase. The ANFIS model is 

established using thirteen dataset selected for the training. 

In the second stage, the trained network has been tested by 

other five additional data sets. Generally, the testing phase 

is executed in order to establish the pre-eminent network 

architecture of the network models. 

In the present investigation three responses/outputs 

(UTS, MWN, and SR) are considered, hence three 

different models were trained. In ANFIS, the number of 

membership functions (MFs) and type of fuzzy rules, are 

considered to be the important factors to predict the 

accurate model. In the present study Sugenotype fuzzy-

based rule has been used for the development of predictive 

models. The value for the error goal RMSE is set at 0.01 

and the number of iterations is 300 epochs. This means, 

the training epochs are continued, until the RMSE fell 

below 0.01 or the epochs reach up to 300. 

In the present study the number of MFs for input 1 

(tool rotational speed) and input 2 (welding speed) are 

taken as three, and for the output UTS, MWN, and SR 

model is developed using the type of input MF as 

triangular (Trimf), trapezoidal (Trapmf), Gaussian 

(Gaussmf), and generalized bell (Gbellmf) MFs. The type 

of output MF is taken as a constant. Nine fuzzy rules are 

used in the present study. The triangular MF for input 1 

(tool rotational speed) and input 2 (welding speed), and 

constant MF for output (UTS) are shown in figure 4 (a)-(c) 

respectively. Similarly input 1 (tool rotational speed) and 

input 2 (welding speed), and constant MF for outputs 

(UTS,MWN, and SR) can be shown using Trapmf, 

Gaussmf, and Gbellmf. The rules and rule viewer for the 

developed ANFIS model of UTS using Trimf is shown in 

figure 5 (a)–(b) respectively. Similarly the rules and rule 

viewer can be shown for the outputs UTS, MWN, and SR 

using Trapmf, Gaussmf, and Gbellmf. 

 
(a) 

 
(b) 

 
(c) 

Figure. 5 a) triangular MF for input 1 (tool rotational speed) b) for input 2 (welding speed), and c) constant MF for output (UTS) 
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González et al. [32] developed the empirical model for 

FSWed Al 6061-T6-Cu C11000 joints. In this study, the 

correlation between performance measure corrosion 

resistance and input parameters of FSW such as the 

welding speed and tool rotational speed was established. 

The R2for the developed model was obtained to be 

0.85.Zhao et al. [33] developed the empirical model for the 

UTS and tensile elongation of FSWed AA2219-T87 

aluminium alloy. The welding factors, such as shoulder 

pinching gap, tool rotational speed and welding speed are 

considered as inputs. The R2 values for the UTS and tensile 

elongation was 0.85 and 0.75 respectively. Yuvaraj et al. 

[34] performed the optimization and empirical modelling 

of FSWed AA7075-T651 and AA6061 aluminium alloys. 

The tool offset, tilt angle, and pin profile were considered 

as the input parameters and UTS was considered as the 

output. The R2value of the empirical model was around 

0.98. 

The predicted values of UTS, MWN, and SR are 
determined for each of these MFs. The R2 values are 
determined in the present study for the UTS, MWN, 
and SR. The R2 values of the output (UTS, MWN, 
and SR) obtained in the present study using Trimf, 
Trapmf, Gaussmf, and Gbellmf are greater than and 
in some cases closer to the R2 values reported in the 
open literature [32-34]. Also the RMSE, testing error 
is determined and depicted in table 3. 

It can be seen that the developed predictive 
models with triangular MF gives more accurate 

prediction of the mechanical properties. The 
minimum testing error of 19.1091, 12.3152, and 
1.0018 is obtained for UTS, MWN, and SR using 
trimf respectively as compared with the trapmf, 
gaussmf, and gbellmf. Moreover, the better value of 
R2 of 0.8639, 0.8178, and 0.9520 are obtained using 
trimffor UTS, MWN, and SR respectively as 
compared with the trapmf, gaussmf, and gbellmf. 

The maximum testing error of 28.1289, 12.9314, 
and 1.3791 is obtained for UTS, MWN, and SR 
respectively using trapmf. Moreover the poor value 
of R2are obtained as 0.7683, 0.7893, and 0.9321for 
UTS, MWN, and SR respectively using trapmf as 
compared with the trimf, gaussmf, and gbellmf. 

It is noted that there is the marginal difference in 
the values of testing error and R2 for gaussmf and 
gbellmf. 

Experiment design matrix with their 
experimental, predicted ANFIS output using trimf, 
trapmf, gaussmf, and gbellmf for UTS, MWN, and 
SR are depicted in table 4. 

The performance validation process of ANFIS 
based on UTS, MWN, and SR are presented 
graphically in figures7(a) −(c)respectively for trimf. 
The experimental values and ANFIS predicted 
values are scattered on both sides and are closer to 
the45° line, this indicates that the perfect fitness of 
the developed ANFIS models.  

 
(a) 

 
(b) 

Figure 6. a)Rules and b) Rule viewer for the developed ANFIS model of UTS using Trimf 

Table 3. RMSE, testing error, and determination coefficient (R2) for various MFs 

Type of MFs 

UTS MWN SR 

Minimal 

training RMSE 
Testing error R2 

Minimal training 

RMSE 
Testing error R2 

Minimal training 

RMSE 
Testing error R2 

Trimf 12.9618 19.1091 0.8639 1.24801 12.3152 0.8178 0.494589 1.0018 0.9520 

Trapmf 14.5044 28.1289 0.7683 0.902507 12.9314 0.7893 0.415752 1.3791 0.9321 

Gaussmf 13.6566 22.0629 0.8302 0.968477 12.4863 0.8073 0.462078 1.1214 0.9477 

Gbellmf 12.0391 22.3088 0.8525 0.777753 12.5225 0.7962 0.398903 1.2141 0.9482 
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(a) 

 
(b) 

 
(c) 

Figure7. Performance of predicted ANFIS output using trimf a)UTS,  b)MHWN, and c) SR 

Table 4.Experimental, predicted ANFIS output using trimf, trapmf, gaussmf, and gbellmf for UTS, MWN, and SR 

Run 

Tool 

rotation 

(rpm) 

Tool 

transverse 
speed 

(mm/min) 

Experimental values Predicted UTS (MPa) Predicted MWN (HV) Predicted SR (µm) 

UTS 

(MPa) 

MWN 

(HV) 
SR (µm) Trimf Trapmf Gaussmf 

Gbell

mf 

Tri

mf 

Trap

mf 

Gauss

mf 

Gbell

mf 

Tri

mf 

Trap

mf 

Gauss

mf 

Gbell

mf 

1 1000 20 130.020 105 12.65 145 151 148 149 107 110 109 110 13.9 14.4 14.2 14.4 

2 1000 28 129.180 123.2 18.65 125 129 127 127 123 123 123 123 18.6 18.6 18.6 18.6 

3 1000 40 90.070 138.4 12.1 91.1 96.2 93.3 92 138 138 138 138 12.1 12.2 12.1 12.2 

4 1200 20 155.775 112.9304 14.9562 156 156 156 156 113 113 113 113 15.3 15 15.2 15 

5 1200 28 130.225 128.956 17.485 135 131 133 133 124 123 124 123 17.6 18.1 17.8 18.1 

6 1200 40 124.275 139.0504 12.7582 123 116 119 121 140 139 139 139 12.8 12.7 12.7 12.6 

7 1400 20 168.830 121 17.65 167 169 168 168 120 122 120 121 16.6 16.7 16.6 16.9 

8 1400 28 127.050 124 16.32 145 137 143 147 125 124 125 124 16.7 16.4 16.5 16.5 

9 1400 40 123.110 120.5 13.23 154 174 160 164 141 141 141 141 13.5 14.3 13.7 14 

10 1600 20 168.495 122.9704 15.7562 170 169 170 170 124 122 124 123 16.8 16.7 16.8 16.7 

11 1600 28 156.705 135.476 18.605 142 137 140 147 129 124 128 125 16.9 16.4 16.7 16.8 

12 1600 40 171.395 140.2904 14.3582 174 174 174 175 141 141 141 141 14.3 14.3 14.3 14.3 

13 1800 20 165.255 128.3504 16.0362 165 165 165 165 128 128 128 128 15.7 16 15.8 15.9 

14 1800 28 160.345 139.096 19.045 124 120 122 126 137 138 137 139 18.3 18.7 18.5 18.6 

15 1800 40 185.355 141.2704 15.0382 182 185 183 181 139 139 139 139 15.2 15.5 15.3 15.4 

16 2000 20 140.220 114.8 15.32 159 164 162 160 131 130 131 130 14.6 15.8 15.2 15.4 

17 2000 28 84.170 142 19.23 106 114 110 100 144 143 143 142 19.7 19.5 19.6 19.5 

18 2000 40 187.850 137 16.15 189 188 189 190 138 139 138 139 16.1 15.8 16 15.9 
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4.2. Discussion based on confirmatory experiment 

In order to check the predictive values of ANFIS 

model, an additional confirmatory experiment is 

performed at tool rotation speed of 1400 rpm and welding 

speed of 20 mm/min. The UTS, microhardness at different 

zones of weld region, and SR is evaluated. The stress-

strain curve, variation of microhardness in weld region, 

and top surface appearance of FSWed joint produced at 

1400 rpm and 20 mm/min are shown in figures 8 (a)-(c) 

respectively. 

The UTS, MWN, and SR obtained are 169.75 MPa, 

122 HV, and 16.3 µm respectively at tool rotation speed of 

1400 rpm and welding speed of 40 mm/min. It can be seen 

that the welded joint can sustain the load of 11.632 kN 

with % peak elongation of 4.9 %. The better tensile 

strength for FSWed joints can be obtained due to the better 

stirring of the material. The conical threaded pin increased 

the amount of material, both in transporting per revolution 

and extruding backward, resulting in more plastic 

deformation. It causes the fine grain size at the WN and 

higher UTS for FSWed joints. 

The microhardness values of FSWed AA7075-T651 

joints are measured at different points from the weld center 

on the advancing as well as the retreating side of the joint. 

The microhardness is measured in different zones of weld 

such WN, thermo mechanically affected zone (TMAZ), 

heat affected zone (HAZ), and base material (BM). Severe 

extrusion and higher plastic deformation during FSW 

causes variation in the grain size and the microhardness in 

the welded region. The microhardness of FSWed joints 

showed variation in the welding zone, mostly followed 

distribution a letter ‘W’ shape (fig.8 b) and found 

maximum at the WN and minimum at the heat affected 

zone(HAZ). 

SR obtained on the weld top surfaces shows process 

effectiveness and generated surface is important from 

operational functioning of the welded joint. The figure 8 

(c) shows the top surface appearance of confirmatory 

experiment. The proper mixing of material is observed at 

the weld line. 

The heat generated in FSW results from the frictional 

effects of the rotating tool on the workpiece. The 

temperature is higher at highertool rotational speed and 

vice-a-versa. The temperature considerably increases 

across the weld samples as the rotating tool speed 

increases. This is due to greater frictional effects of the 

rotating tool on the workpiece as the rotational 

speedincreases leading to a higher amount of heat 

generation and consequently raising the weld temperature 

as reported by Abolusoro et al. [35]. 

 
(a) 

 
(b) 

 
(c) 

Figure8. a)Stress-strain curve b)Microhardness variation at different zones of weld, and c) Top surface appearance of weld 
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Figures 9 (a)-(c) represents the SEM images of WN, 

thermo-mechanically affected zone (TMAZ), and HAZ 

respectively for FSWed joint at tool rotation of 1400 rpm 

and welding speed of 40 mm/min. Figure 9 (a) depicts 

uniform grain distribution with ultra-fine grains having 

sizes in the range of 260 nm to 3 µm can be seen. A tunnel 

defect can be seen. The circular equiaxed grains are also 

observed in the WN. It can be seen that the grains in WN 

are fine as compared to TMAZ and HAZ. It could be 

attributed to higher heat generated in the WN due to more 

contact area of the conical threaded pin type tool. Due to 

higher heat generation in WN causes the dynamic 

recrystallization of grains resulting in finer grains.  

Figure 9 (b) shows the SEM image of TMAZ. The 

pasty material flow,homogenous mixing of material is 

observed. The tunnel defect, and teared edge can be seen. 

The heat transferred from WN to TMAZ was adequate 

resulted in a homogeneous distribution of grain having a 

size in the range of 4-10 µm.  

Figure 9 (c) depicts the SEM image of HAZ.  

Homogeneous distribution of grains with a uniform flow 

of material can be seen. However, the void, the elongated 

grain with the torn edge can be seen. The heat transferred 

from WN to HAZ is less (as compared TMAZ), hence 

teared edge with voids can be seen. 

Beygi et al. [36] reported that contact area between tool 

and material plays an important role for obtaining quality 

weld. With the increase in the contact area between the 

tool and the workpiece, the axial load increases and fewer 

defects are formed due to the higher hydrostatic pressure. 

Further, the sticking condition increases the shearing 

contact area between the tool shoulder and material, and 

therefore, a greater quantity of material enters the shear 

plastic zone to be transferred around the tool. In the 

present study, the better results are using the conical 

threaded tool pin profile. The conical threaded tool pin 

profile provided more contact area that resulted in 

obtaining finer grain structure in WN, TMAZ, and HAZ. 

 
(a) 

 
(b) 

 
(c) 

Figure 9.SEM images of  a) WN,  b) TMAZ,  c) HAZ 
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Figures 10 (a) and (b) shows SEM image of the 

material flow in WN and fracture surface of tensile 

specimen of FSWed AA7075 joints. The weld quality can 

be determined considering the flow of pasty material 

beneath the FSW tool. From the fig. 10 (a), the laminar 

material flow with homogeneous mixing of material is 

seen. The larger contact area of conical threaded tool pin 

profile leads to the proper mixture material. The laminar 

material flow eliminates the defects and produce the joint 

with higher strength.  

It can be seen from the fig.10 (b), that the large dimples 

are observed. The dimples shows the failure of specimen is 

ductile in nature. Moreover, the large size of dimples 

shows that the specimen can sustain a large amount of the 

load. It is seen that the fracture of specimen occurs in the 

HAZ. The HAZ shows coarser grain distribution, lower 

microhardness as compared to WN, TMAZ. 

In the confirmatory experiment the EDS analysis is 

performed to check the presence of tool debris. The figure 

11 (a) and (b) shows the SEM image captured and its EDS 

analysis respectively. The EDS analysis showed absence 

of any debris or any tool material element in the WN. The 

elements, such as Al, Cu, Mg, and Zn show majority of wt. 

% . The elements, such as Mn, Sn, and Ti disappear from 

the WN. The EDS microanalysis showed that the particles 

in the FSW joint mainly consist of the η(MgZn2) phase. 

 

 
(a) 

 
(b) 

Figure10.SEM image of a)Material flow in WN b)Fracture surface of tensile specimen 

 

 
(a) 

 
(b) 

Figure11.  a) SEM of at center of WN used for EDS b) EDS of WN 
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5. Conclusions 

In the present study, the ANFIS model is developed for 

the mechanical properties viz. UTS, MHWN, and SR. The 

confirmatory experiment is conducted at tool rotational 

speed of 1400 rpm and welding speed of 20 mm/min. The 

microstructure at different regions in weld, material flow 

in WN, fracture behavior, and EDS analysis of FSWed 

AA7075 joint is investigated for the confirmatory 

experiment. The following conclusions could be drawn 

from the present work. 

 The ANFIS model is developed to predict UTS, 

MHWN, and SR using trimf, trapmf, gaussmf, and 

gbellmf. 

 The trimf shows minimum testing error of 19.1091, 

12.3152, and 1.0018 for UTS, MHWN, and SR 

respectively as compared to trapmf,gaussmf, and 

gbellmf. 

 The trapmf shows maximum testing error of 28.1289, 

12.9314, and 1.3791 for UTS, MHWN, and SR 

respectively as compared to trimf, gaussmf, and 

gbellmf. 

 The R2 values obtained are 0.8639, 0.8178, and 0.9520 

respectively for UTS, MHWN, and SR respectively 

using trimf. 

 The SEM images shows the ultrafine grain in WN. The 

variation of grain size is observed as 

WN<TMAZ<HAZ<base material. 

The overall presentation of the paper is a relatively 

short and simple in order to help to understand the flow of 

the paper. The model is not developed using other MFs. 

Further study can be carried out to improve the current 

results using different prediction tools such as ANN. The 

study can be also extended to the optimization of process 

parameters using the developed ANFIS model. 
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